cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001081 a(n) = 16*a(n-1) - a(n-2).

Original entry on oeis.org

1, 8, 127, 2024, 32257, 514088, 8193151, 130576328, 2081028097, 33165873224, 528572943487, 8424001222568, 134255446617601, 2139663144659048, 34100354867927167, 543466014742175624, 8661355881006882817
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's polynomials T(n,x) evaluated at x=8.
The a(n) give all (unsigned, integer) solutions of Pell equation a(n)^2 - 63*b(n)^2 = +1 with b(n)= A077412(n-1), n>=1 and b(0)=0.
Also gives solutions to the equation x^2-1=floor(x*r*floor(x/r)) where r=sqrt(7). - Benoit Cloitre, Feb 14 2004
a(7+14k)-1 and a(7+14k)+1 are consecutive odd powerful numbers. The first pair is 130576328+-1. See A076445. - T. D. Noe, May 04 2006
a(n)^2 - 7 * A001080(n)^2 = 1 (this property is equivalent to the second comment). - Vincenzo Librandi, Feb 17 2013
a(n+3)*a(n) - a(n+2)*a(n+1) = 16*63. - Bruno Berselli, Feb 18 2013

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.

Crossrefs

Programs

  • Magma
    I:=[1, 8]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 17 2013
    
  • Mathematica
    LinearRecurrence[{16, -1}, {1, 8}, 30]
    CoefficientList[Series[(1-8*x)/(1-16*x+x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 20 2017 *)
    Table[LucasL[n, 16*I]*(-I)^n/2, {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    Vec((1-8*x)/(1-16*x+x^2)+O(x^30)) \\ Charles R Greathouse IV, Jul 02 2013
  • Sage
    [lucas_number2(n,16,1)/2 for n in range(0,30)] # Zerinvary Lajos, Jun 26 2008
    

Formula

G.f.: (1-8*x)/(1-16*x+x^2). - Simon Plouffe in his 1992 dissertation.
For all members x of the sequence, 7*x^2 - 7 is a square. Limit_{n->infinity} a(n)/a(n-1) = 8 + 3*sqrt(7). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 8) = (S(n, 16)-S(n-2, 16))/2, with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 16)= A077412(n).
a(n) = ((8 + 3*sqrt(7))^n + (8 - 3*sqrt(7))^n)/2.
a(n) = sqrt(63*A077412(n-1)^2 + 1), n>=1, (cf. Richardson comment).
a(n) = 16*a(n-1) - a(n-2) with a(1)=1 and a(2)=8. - Sture Sjöstedt, Nov 18 2011
a(n) = A077412(n) - 8*A077412(n-1). - R. J. Mathar, Jul 22 2017
a(n) = (-i)^n*Lucas(n, 16*i)/2, where i = sqrt(-1). - G. C. Greubel, Jun 06 2019

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Nov 08 2002

A048907 Indices of 9-gonal numbers which are also triangular.

Original entry on oeis.org

1, 10, 154, 2449, 39025, 621946, 9912106, 157971745, 2517635809, 40124201194, 639469583290, 10191389131441, 162422756519761, 2588572715184730, 41254740686435914, 657487278267789889, 10478541711598202305, 166999180107303446986, 2661508340005256949466
Offset: 1

Views

Author

Keywords

Comments

Entries are == 1 (mod 3). - N. J. A. Sloane, Sep 22 2007
lim(n -> Infinity, a(n)/a(n-1)) = 8 + 3*sqrt(7). - Ant King, Nov 03 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{17, -17, 1}, {1, 10, 154}, 17]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-16*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015

Formula

G.f.: x*(1-7*x+x^2)/((1-x)*(1-16*x+x^2)).
a(n+2) = 16*a(n+1)-a(n)-5, a(n+1) = 8*a(n)-2.5+1.5*(28*a(n)^2-20*a(n)+1)^0.5. - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3).
a(n) = ceiling(3/28*(3-sqrt(7))*(8 + 3*sqrt(7))^n).
(End)
a(n) = A097830(n-1)-7*A097830(n-2)+A097830(n-3). - R. J. Mathar, Jul 04 2024

A064716 Smallest member of three consecutive numbers each of which is the sum of two nonzero squares (not necessarily different).

Original entry on oeis.org

72, 232, 288, 520, 584, 800, 808, 1096, 1152, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2592, 2600, 2824, 3328, 3392, 3528, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6272, 6352, 6408, 6568, 6920, 8080
Offset: 1

Views

Author

Robert G. Wilson v, Oct 13 2001

Keywords

Comments

a(n) == 0 (modulo 4) since no integer == 3 (modulo 4) can be represented as the sum of two squares.
This sequence has as a subsequence 72, 288, 800, 1800, ... which is 8 * (triangular numbers)^2. Proof: If x = 8*(n(n+1)/2)^2 then x = (n(n+1))^2 + (n(n+1))^2, x+1 = ((n-1)(n+1))^2 + (n(n+2))^2 and x+2 = (n^2+n-1)^2 + (n^2+n+1)^2. See A254371 - Joshua Zucker, Nov 01 2002
From Altug Alkan, Apr 13 2016: (Start)
If n is in this sequence, so is n*(n+2). Proof:
If n is in this sequence, then n = a^2 + b^2, n+1 = c^2 + d^2, n+2 = e^2 + f^2 for a, b, c, d, e, f being nonzero integers.
So, n*(n+2) = (a^2 + b^2)*(e^2 + f^2) = (a*e + b*f)^2 + (a*f - b*e)^2. Note that a*f cannot be equal to b*e because of their definitions.
n*(n+2) + 1 = n^2 + 2*n + 1 = (n+1)^2. Since we know that n mod 4 = 0, then n+1 cannot be of the form 2*k^2, that is, c and d must be different. So (n+1)^2 is the sum of two nonzero squares because n+1 = c^2 + d^2.
n*(n+2) + 2 = (n+1)^2 + 1, that is obviously the sum of two nonzero squares.
So if n is in this sequence, then n*(n+2), n*(n+2) + 1 and n*(n+2) + 2 are the sums of two nonzero squares, that is n*(n+2) must also be member of this sequence.
Note that it can be produced by repeating of this result and n*(n+2)*(n*(n+2)+2)*(n*(n+2)*(n*(n+2)+2)+2)... is always a member, if n is a member. (End)
For k > 0, 25*k^2*(10*k+2)^2 and 8*A001080(k)^2 are terms. - Jinyuan Wang, Feb 23 2019

Examples

			72 = 6^2 + 6^2, 73 = 3^2 + 8^2, 74 = 5^2 + 7^2.
		

Crossrefs

Cf. A254371 \ {0, 8} (a subsequence).

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= {seq(seq(a^2+b^2, b=1..floor(sqrt(N+2-a^2))),a=1..floor(sqrt(N+2)))}:
    sort(convert(S intersect map(`-`,S,1) intersect map(`-`,S,2),list)); # Robert Israel, Apr 14 2016
  • Mathematica
    a = Table[n^2, {n, 1, 100}]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i} ]; c = Union[c]; c[[ Select[ Range[ Length[c] - 2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]]
    Select[Range@ 8080, AllTrue[# + {0, 1, 2}, Length[ PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] &] (* _Michael De Vlieger, Apr 13 2016, Version 10 *)
  • PARI
    is(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2));
    lista(nn) = {for(n=1,nn,if(is(n)==1&&is(n+1)==1&&is(n+2)==1,print1(n,", ")))}; \\ Jinyuan Wang, Feb 23 2019

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A307168 First class of all proper positive solutions x1(n) = a(n) of the Pell equation x^2 - 7*y^2 = 9.

Original entry on oeis.org

11, 172, 2741, 43684, 696203, 11095564, 176832821, 2818229572, 44914840331, 715819215724, 11408192611253, 181815262564324, 2897636008417931, 46180360872122572, 735988137945543221, 11729629846256568964, 186938089402159560203, 2979279800588296394284, 47481538720010582748341
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2019

Keywords

Comments

The corresponding solutions y1(n) are given in A307169.
The (generalized) Pell equation x^2 - 7*y^2 = 9 has two proper classes of positive solutions (x1(n), y1(n)) and (x2(n), y2(n)), for n >= 1, where x2 = A307172, and y2 = A307173.
The improper class of nonnegative solutions is given by (xi(n) = 3*X(n), yi(n) = 3*Y(n)), with the nonnegative solutions of the Pell equation X^2 - 7*Y^2 = +1, given by X(n) = A001081(n) and Y(n) = A001080(n), for n >= 0.
The proper positive solutions (x1(n), y1(n)) are given in matrix notation by -R(0)*R(2)*Auto(n)*R^{-1}(6)*(1, 0)^T (T for transposed) with the R-matrix R(t) = Matrix([[0, -1],[1, t]]) and its inverse R^{-1}(t) = Matrix([t, 1],[-1, 0]) and the automorphic matrix Auto = Matrix([2, 9],[3, 14]). The matrix power Auto^n can be given in terms of Chebyshev S-polynomials S(n, x=16) from A077412 as Auto^n = Matrix([S(n, 16) - 14*S(n-1, 16), 9*S(n-1, 16)],[3*S(n-1, 16), S(n, 16) - 2*S(n-1, 16)]).
This results from the reduced principal binary quadratic form F_p = [1, 4, -3] of the non-reduced Pell form FPell = [1, 0, -7], and the primitive representative parallel form FPara1 = [9, 8, 1] for discriminant 4*7 = 28 and the representation of 9. These forms are then connected via equivalence transformations using R(t) matrices.

Examples

			The solutions (x1(n), y1(n)) begin: (11, 4), (172, 65), (2741, 1036), (43684, 16511), (696203, 263140), (11095564, 4193729), (176832821, 66836524), (2818229572, 1065190655), (44914840331, 16976213956), ...
The solutions (x2(n), y2(n)) begin: (4, 1), (53, 20), (844, 319), (13451, 5084), (214372, 81025), (3416501, 1291316), (54449644, 20580031), (867777803, 327989180), (13829995204, 5227246849), ...
The improper solutions (xi(n), yi(n)) begin: (3, 0), (24, 9), (381, 144), (6072, 2295), (96771, 36576), (1542264, 582921), (24579453, 9290160), (391728984, 148059639), (6243084291, 2359664064), ...
		

Crossrefs

Formula

a(n) = 4*S(n, 16) - 53*S(n-1, 16), for n >= 1, with S(n, 16) = A077412(n).
a(n) = sqrt(9 + 7*A307169(n)), n >= 1.
G.f.: x*(11 - 4*x)/(1 - 16*x + x^2).

A084069 Numbers k such that 7*k^2 = floor(k*sqrt(7)*ceiling(k*sqrt(7))).

Original entry on oeis.org

1, 3, 17, 48, 271, 765, 4319, 12192, 68833, 194307, 1097009, 3096720, 17483311, 49353213, 278635967, 786554688, 4440692161, 12535521795, 70772438609, 199781794032, 1127918325583, 3183973182717, 17975920770719, 50743789129440
Offset: 1

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

This is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Sep 01 2019

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+3x+x^2)/(1-16x^2+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{0,16,0,-1},{1,3,17,48},31] (* Harvey P. Dale, Oct 31 2011 *)

Formula

a(1)=1, a(2)=3, a(2n) = 6*a(2n-1)-a(2n-2); a(2n+1) = 3*a(2n)-a(2n-1).
a(n)*a(n+3) = -3 + a(n+1)*a(n+2).
G.f.: x*(1+3*x+x^2)/(1-16*x^2+x^4). [corrected by Harvey P. Dale, Oct 31 2011]
a(n) = 16*a(n-2) - a(n-4), n > 4. - Harvey P. Dale, Oct 31 2011
a(n) = U_n(sqrt(18),1) = (alpha^n - beta^n)/(alpha - beta) for n odd and a(n) = 3*U_n(sqrt(18),1) = (sqrt(2)/2)*(alpha^n - beta^n)/(alpha - beta) for n even, where U_n(sqrt(R),Q) denotes the Lehmer sequence with parameters R and Q and alpha = (sqrt(3) + sqrt(14))/2 and beta = (sqrt(3) - sqrt(14))/2. - Peter Bala, Sep 01 2019

A140746 Numbers n such that n^2 + 3 is powerful, (i.e., is of the form a^2*b^3, with a>=1, b>=1).

Original entry on oeis.org

1, 37, 79196, 177833, 5290738, 9667939010
Offset: 1

Views

Author

Lekraj Beedassy, Jul 12 2008

Keywords

Comments

Florian Luca proved that this sequence is infinite, by showing that 37*x(7*k) + 98*y(7*k) is in the sequence, where x(k) = A001081(k) and y(k) = A001080(k) are solutions of the Pell equation x^2 - 7*y^2 = 1. The sequence of these numbers is 37, 9667939010, 2524807950507510523, 659360302164952911361460078, ... - Amiram Eldar, Aug 22 2018
a(7) <= 457189690981. - Giovanni Resta, Aug 23 2018

Examples

			37 is the sequence since 37^2 + 3 = 1372 = 2^2 * 7^3 is powerful.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 37, pp 14, Ellipses, Paris 2008.

Crossrefs

Cf. A001694 (powerful), A001080, A001081, A117950 (n^2+3).

Programs

  • Mathematica
    powerfulQ[n_] := Min@FactorInteger[n][[All, 2]] > 1; Select[Range[100000], powerfulQ[#^2 + 3] &] (* Amiram Eldar, Aug 22 2018 *)
  • PARI
    isok(n) = vecmin(factor(n^2+3)[,2]) > 1; \\ Michel Marcus, Aug 24 2018

Extensions

a(5) corrected and a(6) removed by Amiram Eldar, Aug 22 2018
a(6) from Giovanni Resta, Aug 23 2018

A132594 Values X satisfying the equation: X(X + 1) - 7*Y^2 = 0.

Original entry on oeis.org

0, 63, 16128, 4096575, 1040514048, 264286471743, 67127723308800, 17050177433963583, 4330677940503441408, 1099975146710440154175, 279389356586511295719168, 70963796597827158672514623
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

The full set of integer solutions to this equation consists of the pairs [X(i),Y(i)] = [1+-A001081(i), Y(i)=A001080(i)]. The present generates every second one of them: a(n) = [A001081(2n)-1]/2. - R. J. Mathar, Nov 20 2007

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{255,-255,1},{0,63,16128},20] (* Harvey P. Dale, Dec 15 2012 *)

Formula

a(0)=0, a(1)=63 and a(n)=254*a(n-1) - a(n-2) + 126.
G.f.: -63*x*(1+x)/(-1+x)/(1-254*x+x^2). a(n) = [A001081(2n)-1]/2. - R. J. Mathar, Nov 20 2007
a(0)=0, a(1)=63, a(2)=16128, a(n)=255*a(n-1)-255*a(n-2)+a(n-3). - Harvey P. Dale, Dec 15 2012

Extensions

More terms from Max Alekseyev, Nov 13 2009

A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.

Original entry on oeis.org

4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1

Views

Author

Charles L. Hohn, Dec 10 2024

Keywords

Comments

Also, integers w >= 1 for each row n >= 1 such that z+(1/z) is an integer, where x = A000037(n), y = w*sqrt(x), and z = (y+ceiling(y))/2.
All terms of row n are positive integer multiples of T(n, 1).
Limit_{k->oo} T(n, k+1)/T(n, k) = (sqrt(b^2-4)+b)/2 where b=T(n, 2)/T(n, 1).

Examples

			n=row index; x=nonsquare integer of index n (A000037(n)):
 n  x    T(n, k)
------+---------------------------------------------------------------------
 1  2 |  4,   24,   140,     816,      4756,       27720,        161564, ...
 2  3 |  2,    8,    30,     112,       418,        1560,          5822, ...
 3  5 |  1,    3,     8,      21,        55,         144,           377, ...
 4  6 |  4,   40,   396,    3920,     38804,      384120,       3802396, ...
 5  7 |  6,   96,  1530,   24384,    388614,     6193440,      98706426, ...
 6  8 |  2,   12,    70,     408,      2378,       13860,         80782, ...
 7 10 | 12,  456, 17316,  657552,  24969660,   948189528,   36006232404, ...
 8 11 |  6,  120,  2394,   47760,    952806,    19008360,     379214394, ...
 9 12 |  1,    4,    15,      56,       209,         780,          2911, ...
10 13 |  3,   33,   360,    3927,     42837,      467280,       5097243, ...
11 14 |  8,  240,  7192,  215520,   6458408,   193536720,    5799643192, ...
12 15 |  2,   16,   126,     992,      7810,       61488,        484094, ...
13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ...
14 18 |  8,  272,  9240,  313888,  10662952,   362226480,   12305037368, ...
...
		

Crossrefs

Programs

  • PARI
    row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)}
    for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))

Formula

For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
T(n, 2) = Sum_{i=0..oo}(T(n, 1)^(2-2*i) * x^((1-2*i)/2) * A002420(i) * A033999(i)).
If T(n, 1) is even, then T(n, 2) = T(n, 1)*A180495(n); if T(n, 1) is odd and x is even, then T(n, 2) = T(n, 1)*sqrt(A180495(n)+2); if T(n, 1) and x are both odd, then T(n, 2) is a factor of T(n, 1)*A180495(n).
For k >= 3, T(n, k) = T(n, k-1)*(T(n, 2)/T(n, 1)) - T(n, k-2) = T(n, 1)*A298675(T(n, 2)/T(n, 1), k-1) + T(n, k-2) = sqrt((A298675(T(n, 2)/T(n, 1), k)^2-4)/x).
Showing 1-9 of 9 results.