cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073762 a(n) = 24*n - 12.

Original entry on oeis.org

12, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Comments

Previous name: "Smallest unrelated number belonging to a term of this sequence equals 8."
This is also the list of numbers k such that A259748(k)/k = 5/12. - José María Grau Ribas, Jul 12 2015.
Also the total number of line segments creating a stellated octahedron, where the length of each stellated edge equals n-1, and where the octahedron has 12 edges, each fixed at unit length. - Peter M. Chema, Apr 28 2016

Examples

			URSet[12] = {8,9,10} so 12 is here.
		

Crossrefs

Programs

  • Magma
    [24*n-12: n in [1..60]]; // Vincenzo Librandi, Jun 15 2011
  • Mathematica
    tn[x_] := Table[w, {w, 1, x}]; di[x_] := Divisors[x]; dr[x_] := Union[di[x], rrs[x]]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; unr[x_] := Complement[tn[x], dr[x]]; Do[s=Min[unr[n]]; If[Equal[s, 8], Print[n]], {n, 1, 1000}]
    Range[12, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
  • PARI
    a(n)=24*n-12 \\ Charles R Greathouse IV, Jun 14 2011
    
  • PARI
    x='x+O('x^100); Vec(12*(1+x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
    

Formula

Min{URS[m]} = 8, where UNR[m] = Complement[RRS[m], Divisors[m]].
a(n) = 24*n - 12. - Max Alekseyev, Mar 03 2007
a(n) = 12*A005408(n-1). - Danny Rorabaugh, Oct 22 2015
G.f.: 12*x*(1 + x)/(1 - x)^2. - Ilya Gutkovskiy, Apr 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/48. - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 12*(exp(x)*(2*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A073758 Smallest number that is neither a divisor of nor relatively prime to n, or 0 if no such number exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 6, 6, 4, 0, 8, 0, 4, 6, 6, 0, 4, 0, 6, 6, 4, 0, 9, 10, 4, 6, 6, 0, 4, 0, 6, 6, 4, 10, 8, 0, 4, 6, 6, 0, 4, 0, 6, 6, 4, 0, 9, 14, 4, 6, 6, 0, 4, 10, 6, 6, 4, 0, 8, 0, 4, 6, 6, 10, 4, 0, 6, 6, 4, 0, 10, 0, 4, 6, 6, 14, 4, 0, 6, 6, 4, 0, 8, 10, 4, 6, 6, 0, 4, 14, 6, 6, 4, 10, 9, 0, 4, 6
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Comments

Original name: Smallest number of "unrelated set" belonging to n [=URS(n)]. Least number, neither divisor nor relatively prime to n. Or a(n)=0 if unrelated set is empty.
From Michael De Vlieger, Mar 28 2016 (Start):
Primes n have no unrelated numbers m < n since all such numbers are coprime to n.
Unrelated numbers m must be composite since primes must either divide or be coprime to n.
m = 1 is not counted as unrelated as it divides and is coprime to n.
a(4) = 0 since 4 is the smallest composite and unrelated numbers m with respect to n must be composite and smaller than n. All other composite n have at least one unrelated number m.
The test for unrelated numbers m that belong to n is 1 < gcd(m, n) < m.
a(6) = A073759(6), a(8) = A073759(8), a(9) = A073759(9). (End)

Examples

			a(20) = 6 since it is the smallest term of the set of numbers m that neither divide nor are coprime to 20, i.e., {6, 8, 12, 14, 15, 16, 18}.
		

Crossrefs

Cf. A045763.

Programs

  • Mathematica
    tn[x_] := Table[w, {w, 1, x}]; di[x_] := Divisors[x]; dr[x_] := Union[di[x], rrs[x]]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; unr[x_] := Complement[tn[x], dr[x]]; Table[Min[unr[w]], {w, 1, 128}] (* + or -Infinity is replaced by 0 *)
    Table[SelectFirst[Range[4, n - 2], 1 < GCD[#, n] < # &] /. n_ /; MissingQ@ n -> 0, {n, 99}] (* Michael De Vlieger, Mar 28 2016, Version 10.2 *)
  • PARI
    a(n) = {for(k=1, n-1, if ((gcd(n,k) != 1) && (n % k), return (k));); 0;} \\ Michel Marcus, Mar 29 2016

A073760 Integers m such that A073758(m) = 4.

Original entry on oeis.org

6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Comments

Essentially the same as A016825.

Crossrefs

Programs

Formula

a(n) = 4*n + 2. - Max Alekseyev, Mar 03 2007
a(n) = 8*n - a(n-1), with a(1)=6. - Vincenzo Librandi, Aug 08 2010
a(1)=6, a(2)=10; for n>2, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Mar 06 2012

Extensions

Definition simplified by Michel Marcus, Jul 26 2018

A073813 Difference between n and largest unrelated number belonging to n, when n runs over composite numbers. For primes and for 4, unrelated set is empty.

Original entry on oeis.org

0, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 7, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 7, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 7, 2, 11, 2, 3, 2, 5, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2
Offset: 1

Views

Author

Labos Elemer, Aug 15 2002

Keywords

Comments

From Michael De Vlieger, Mar 28 2016 (Start):
a(0) = 0 since 4 is the smallest composite and "unrelated" numbers k with respect to n must be composite and smaller than n. Unrelated numbers k cannot be prime since primes p must either divide or be coprime to n; k cannot equal 1 since 1 is both a divisor of and coprime to n.
The test for unrelated numbers k that belong to n is 1 < gcd(k, n) < k.
(End)

Examples

			composite[1]=4, URS[4]={}, a(1)=0 by convention; n=14, c[14]=24, URS[24]={9,10,14,15,16,18,20,21,22}, a(14)=24-Max[URS[24]]=2.
		

Crossrefs

Cf. A056608. [From R. J. Mathar, Sep 23 2008]

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; tn[x_] := Table[j, {j, 1, x}]; di[x_] := Divisors[x]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; rs[x_] := Union[rrs[x], di[x]]; urs[x_] := Complement[tn[x], rs[x]]; Table[c[w]-Max[urs[c[w]]], {w, 1, 128}]
    Prepend[Function[k, k - SelectFirst[Range[k - 2, 2, -1], 1 < GCD[#, k] < # &]] /@ Select[Range[6, 138], ! PrimeQ@ # &], 0] (* Michael De Vlieger, Mar 28 2016, Version 10 *)

Formula

See program.

A073814 a(n) is the smallest number k such that A073813(k) = prime(n).

Original entry on oeis.org

2, 4, 15, 33, 90, 129, 227, 288, 429, 694, 798, 1149, 1417, 1565, 1879, 2399, 2993, 3201, 3879, 4365, 4623, 5429, 6002, 6920, 8245, 8948, 9314, 10067, 10457, 11245, 14251, 15184, 16627, 17130, 19711, 20253, 21919, 23653, 24845, 26687, 28604, 29248, 32612, 33303, 34719, 35436, 39893, 44622, 46254
Offset: 1

Views

Author

Labos Elemer, Aug 15 2002

Keywords

Examples

			a(6)=129 means that c[129]-Max[URS[c[129]]=Prime[6]: c[129]=169, Max[URS[169]]=Max{26,39,...,143,156}=156; difference=169-156=13=6th prime. Suspicion: A073813(n) is always prime number!
		

Crossrefs

Cf. A120389. [From R. J. Mathar, Aug 07 2008]

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; tn[x_] := Table[j, {j, 1, x}]; di[x_] := Divisors[x]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; rs[x_] := Union[rrs[x], di[x]]; urs[x_] := Complement[tn[x], rs[x]]; Do[s=c[n]-Max[urs[c[n]]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10}]; t
    nn = 6 * 10^4; s = Function[k, k - SelectFirst[Range[k - 2, 2, -1], 1 < GCD[#, k] < # &]] /@ Select[Range[6, nn], ! PrimeQ@ # &]; Table[SelectFirst[Range@ Length@ s, s[[# - 1]] == Prime@ n &], {n, 49}] (* Michael De Vlieger, Mar 28 2016, Version 10 *)

Formula

Min{x; c[x]-Max[URS[c[x]]]=p(n)}, p(n)=n-th prime. See program.

Extensions

Definition corrected by Gionata Neri, Mar 28 2016
More terms from Michael De Vlieger, Mar 28 2016
Showing 1-5 of 5 results.