cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067488 Powers of 2 with initial digit 1.

Original entry on oeis.org

1, 16, 128, 1024, 16384, 131072, 1048576, 16777216, 134217728, 1073741824, 17179869184, 137438953472, 1099511627776, 17592186044416, 140737488355328, 1125899906842624, 18014398509481984, 144115188075855872, 1152921504606846976, 18446744073709551616
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Comments

Also smallest n-digit power of 2.
For each range 10^(n-1) to 10^n-1 there exists exactly 1 power of 2 with first digit 1 (floor(log_10(a(n))) = n-1). As such, the density of this sequence relative to all powers of 2 (A000079) is log(2)/log(10) (0.301..., A007524), which is prototypical of Benford's Law. - Charles L. Hohn, Jul 23 2024

Crossrefs

Programs

Formula

a(n) = 2^ceiling((n-1)*log(10)/log(2)). - Benoit Cloitre, Aug 29 2002
From Charles L. Hohn, Jun 09 2024: (Start)
a(n) = 2^A067497(n-1).
A055642(a(n)) = n. (End)

A074116 Largest n-digit power of 2.

Original entry on oeis.org

8, 64, 512, 8192, 65536, 524288, 8388608, 67108864, 536870912, 8589934592, 68719476736, 549755813888, 8796093022208, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 576460752303423488, 9223372036854775808, 73786976294838206464, 590295810358705651712
Offset: 1

Views

Author

Amarnath Murthy, Aug 27 2002

Keywords

Comments

The exponents are given in A066343. - Evgeny Kapun, Jan 16 2017
An equivalent definition (which was formerly the definition of A074113): "Smallest n-digit number of the form p^a*q^b... with the maximum value of a+b+.... where p, q etc. are primes. If a,b,c,... are the indices in the signature prime factorization then a+b+c ... is a maximum." That this is the same sequence follows from the inequality p^a*q^b... >= 2^(a+b+...) and the fact that there always exists a power of 2 between two consecutive powers of 10.

Crossrefs

Programs

  • Mathematica
    Last[#]&/@(With[{l2=2^Range[80]},Table[Select[l2,IntegerLength[#] == n&], {n,22}]]) (* Harvey P. Dale, Jul 17 2011 *)

Formula

a(n) = 2^A066343(n).

Extensions

Edited by R. J. Mathar, Feb 13 2008, Max Alekseyev, Mar 10 2009, Harvey P. Dale, Jul 17 2011, Evgeny Kapun, Jan 16 2017, and N. J. A. Sloane, Jan 18 2017

A074118 Largest power of 3 <= 10^n.

Original entry on oeis.org

1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363
Offset: 0

Views

Author

Amarnath Murthy, Aug 27 2002

Keywords

Comments

a(n)=3^d(n), with d(0)=0 and d(n)=A054965(n) if n>0. [Zak Seidov, Oct 01 2010]

Crossrefs

Programs

  • Mathematica
    Table[3^Floor@Log[3, 10^n],{n,0,20}] (*Zak Seidov, Sep 29 2010*)

Extensions

a(0)=1 and more terms from Zak Seidov, Sep 29 2010
Showing 1-3 of 3 results.