cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067488 Powers of 2 with initial digit 1.

Original entry on oeis.org

1, 16, 128, 1024, 16384, 131072, 1048576, 16777216, 134217728, 1073741824, 17179869184, 137438953472, 1099511627776, 17592186044416, 140737488355328, 1125899906842624, 18014398509481984, 144115188075855872, 1152921504606846976, 18446744073709551616
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Comments

Also smallest n-digit power of 2.
For each range 10^(n-1) to 10^n-1 there exists exactly 1 power of 2 with first digit 1 (floor(log_10(a(n))) = n-1). As such, the density of this sequence relative to all powers of 2 (A000079) is log(2)/log(10) (0.301..., A007524), which is prototypical of Benford's Law. - Charles L. Hohn, Jul 23 2024

Crossrefs

Programs

Formula

a(n) = 2^ceiling((n-1)*log(10)/log(2)). - Benoit Cloitre, Aug 29 2002
From Charles L. Hohn, Jun 09 2024: (Start)
a(n) = 2^A067497(n-1).
A055642(a(n)) = n. (End)

A074116 Largest n-digit power of 2.

Original entry on oeis.org

8, 64, 512, 8192, 65536, 524288, 8388608, 67108864, 536870912, 8589934592, 68719476736, 549755813888, 8796093022208, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 576460752303423488, 9223372036854775808, 73786976294838206464, 590295810358705651712
Offset: 1

Views

Author

Amarnath Murthy, Aug 27 2002

Keywords

Comments

The exponents are given in A066343. - Evgeny Kapun, Jan 16 2017
An equivalent definition (which was formerly the definition of A074113): "Smallest n-digit number of the form p^a*q^b... with the maximum value of a+b+.... where p, q etc. are primes. If a,b,c,... are the indices in the signature prime factorization then a+b+c ... is a maximum." That this is the same sequence follows from the inequality p^a*q^b... >= 2^(a+b+...) and the fact that there always exists a power of 2 between two consecutive powers of 10.

Crossrefs

Programs

  • Mathematica
    Last[#]&/@(With[{l2=2^Range[80]},Table[Select[l2,IntegerLength[#] == n&], {n,22}]]) (* Harvey P. Dale, Jul 17 2011 *)

Formula

a(n) = 2^A066343(n).

Extensions

Edited by R. J. Mathar, Feb 13 2008, Max Alekseyev, Mar 10 2009, Harvey P. Dale, Jul 17 2011, Evgeny Kapun, Jan 16 2017, and N. J. A. Sloane, Jan 18 2017

A074117 Smallest n-digit power of 3.

Original entry on oeis.org

1, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121, 1350851717672992089, 12157665459056928801
Offset: 1

Views

Author

Amarnath Murthy, Aug 27 2002

Keywords

Crossrefs

Formula

a(n) = 3^ceiling((n-1)*log(10)/log(3)). - Andrew Howroyd, Jan 16 2020

Extensions

a(1) corrected and terms a(16) and beyond from Andrew Howroyd, Jan 16 2020

A054965 Beatty sequence for log_3(10), i.e., for 1/log_10(3); so largest exponent of 3 which produces an n-digit decimal number.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 132, 134, 136
Offset: 1

Views

Author

Henry Bottomley, Dec 13 2002

Keywords

Examples

			log_10(3) = 0.477121... so a(11) = floor(11/0.477121...) = floor(23.0549...) = 23; 3^23 = 94143178827 is the largest 11 decimal digit power of 3.
		

Crossrefs

Programs

  • Mathematica
    Floor[Range[100]*Log[3, 10]] (* Paolo Xausa, Jul 11 2024 *)
  • PARI
    a(n) = n*log(10)\log(3); \\ Michel Marcus, Aug 03 2017

Formula

a(n) = floor(n/log_10(3)) = log_3(A074118(n)) = A062153(A074118(n)).
Showing 1-4 of 4 results.