cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A061305 Squarefree Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 21, 34, 55, 89, 233, 377, 610, 987, 1597, 4181, 6765, 10946, 17711, 28657, 121393, 196418, 317811, 514229, 1346269, 2178309, 3524578, 5702887, 9227465, 24157817, 39088169, 63245986, 102334155, 165580141, 433494437, 701408733, 1134903170, 1836311903
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2001

Keywords

Comments

Union of A074691 and A075735. - R. J. Mathar, Feb 06 2010
About 60% of entries are of the form 4k+1; 20% are of the form 4k+2; 20% are of the form 4k+3. Obviously no term is divisible by 4. - Carmine Suriano, Feb 27 2014
Contains A030426 as a subsequence unless there exist Wall-Sun-Sun primes. - Max Alekseyev, Jan 04 2018

Examples

			55 = 5 * 11 is a squarefree Fibonacci number.
		

Crossrefs

Intersection of A000045 and A005117.

Programs

  • Mathematica
    a={}; Do[f=Fibonacci[n]; If[SquareFreeQ[f], AppendTo[a, f]], {n, 1, 50}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)
    Select[Fibonacci[Range[50]],SquareFreeQ] (* Harvey P. Dale, Aug 26 2021 *)
  • PARI
    { n=0; g=0; f=1; for (i=1, 500, if (issquarefree(g), write("b061305.txt", n++, " ", g)); if (n==200, break); s=f; f+=g; g=s ) } \\ Harry J. Smith, Jul 21 2009

Formula

Set difference of A000045 and A061899. a(n) = A000045(A037918(n)). - R. J. Mathar, Feb 16 2010

Extensions

More terms from Asher Auel, May 14 2001
Mathematica updated by Jean-François Alcover, Jul 04 2013

A075735 Squarefree Fibonacci numbers with an even number of prime factors (mu(n)=1).

Original entry on oeis.org

1, 1, 21, 34, 55, 377, 4181, 6765, 17711, 121393, 196418, 317811, 1346269, 2178309, 5702887, 102334155, 165580141, 32951280099, 53316291173, 139583862445, 956722026041, 2504730781961, 10610209857723, 308061521170129
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Examples

			21 is a Fibonacci number and 21=3*7, 34 is a Fibonacci numbers and 34=2*17, ...
		

Crossrefs

Subsequence of A061305 (squarefree Fibonacci numbers).

Programs

  • Maple
    with(combinat, fibonacci): m1_fib := proc(n); if (numtheory[mobius](fibonacci(n))=1) then RETURN(fibonacci(n)); fi; end: seq(m1_fib(i), i=1..100);

A075736 Fibonacci numbers F(k) as k runs through the products of an odd number of distinct primes A030059 (mu(k)=-1).

Original entry on oeis.org

1, 2, 5, 13, 89, 233, 1597, 4181, 28657, 514229, 832040, 1346269, 24157817, 165580141, 267914296, 433494437, 2971215073, 53316291173, 956722026041, 2504730781961, 27777890035288, 44945570212853, 190392490709135
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Examples

			30=2*3*5 and fibonacci(30)=832040, 31 is prime and fibonacci(31)=1346269,...
		

Crossrefs

Programs

Formula

a(n) = A000045(A030059(n)).

A075742 Fibonacci numbers for which both the value and index are the product of an odd number of distinct primes; that is, numbers Fibonacci(k) for which mu(k) = mu(Fibonacci(k)) = -1.

Original entry on oeis.org

2, 5, 13, 89, 233, 1597, 28657, 514229, 24157817, 433494437, 2971215073, 44945570212853, 190392490709135, 99194853094755497, 1500520536206896083277, 3928413764606871165730, 1066340417491710595814572169, 19134702400093278081449423917
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Examples

			11 is a prime and Fibonacci(11) = 89 is a prime, 13 is a prime and Fibonacci(13) = 233 is a prime, but Fibonacci(16) = 987 = 3*7*47 and 16 is not squarefree and 30 = 2*3*5 is the product of an odd number of distinct primes but Fibonacci(30) = 832040 = 2^3*5*11*31*61 is not squarefree, ...
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci): m2_supM_fib := proc(n); if (numtheory[mobius](n)=-1) then if (numtheory[mobius](fibonacci(n))=-1) then RETURN(fibonacci(n)); fi; fi; end:

Extensions

Incorrect 83621143489848422977 removed and more terms from Sean A. Irvine, Mar 05 2025
Showing 1-4 of 4 results.