cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A361972 Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k*log(k)) - log(log(n)) ).

Original entry on oeis.org

7, 9, 4, 6, 7, 8, 6, 4, 5, 4, 5, 2, 8, 9, 9, 4, 0, 2, 2, 0, 3, 8, 9, 7, 9, 6, 2, 0, 6, 5, 1, 4, 9, 5, 1, 4, 0, 6, 4, 9, 9, 9, 5, 9, 0, 8, 8, 2, 8, 0, 4, 9, 6, 8, 9, 0, 1, 5, 1, 2, 0, 9, 5, 0, 1, 4, 8, 1, 7, 8, 5, 8, 9, 6, 0, 6, 8, 7, 5, 6, 6, 6, 9, 6, 6, 1, 4, 7, 7, 7, 6, 2, 7, 3, 3
Offset: 0

Views

Author

Bernard Schott, Apr 08 2023

Keywords

Comments

Let u(n) = Sum_{k=2..n} 1/(k*log(k)) - log(log(n)), then (u(n)) is strictly decreasing and lower bounded by -log(log(2)) = A074785, so (u(n)) is convergent, while the series v(n) = Sum_{k=2..n} 1/(k*log(k)) diverges (see Mathematics Stack Exchange link).
Compare with w(n) = Sum_{k=1..n} 1/k - log(n) that converges (A001620), while the harmonic series H(n) = Sum_{k=1..n} 1/k diverges.

Examples

			0.79467864545289940220389796...
		

References

  • J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1.18 p. 23, 1988, Classes Préparatoires aux Grandes Ecoles, Ellipses.

Crossrefs

Programs

  • Maple
    limit(sum(1/(k*log(k)), k=2..n) - log(log(n)), n = infinity);

Formula

Limit_{n->oo} 1/(2*log(2)) + 1/(3*log(3)) + ... + 1/(n*log(n)) - log(log(n)).
Equals A241005 - log(log(2)) = A241005 + A074785. - Amiram Eldar, Apr 08 2023

A194562 Decimal expansion of log(log(3)).

Original entry on oeis.org

0, 9, 4, 0, 4, 7, 8, 2, 7, 6, 1, 6, 6, 9, 9, 0, 1, 6, 1, 7, 4, 3, 3, 4, 3, 3, 2, 0, 8, 4, 4, 9, 3, 9, 9, 2, 7, 8, 5, 3, 3, 8, 0, 2, 9, 6, 1, 8, 4, 1, 8, 4, 8, 8, 0, 1, 4, 2, 1, 9, 3, 5, 4, 5, 6, 0, 1, 7, 5, 3, 4, 5, 6, 4, 0
Offset: 0

Views

Author

Kausthub Gudipati, Sep 20 2011

Keywords

Examples

			0.09404782761669901617433433208449399278533802961841...
		

Crossrefs

Programs

Formula

Equals log(A002391).

A059200 Engel expansion of -log(log(2)) = 0.36651292... .

Original entry on oeis.org

3, 11, 11, 23, 62, 66, 466, 1450, 7617, 95677, 100963, 153329, 966054, 4744661, 23899231, 25086529, 52363821, 100389201, 201892089, 261170111, 312778184, 527002514, 1235004065, 1623652949, 2309078745, 8274570969
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A074785.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[-Log[Log[2]], 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A059567 Beatty sequence for 1 - log(log(2)).

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 97
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059568.
Cf. A074785.

Programs

  • Mathematica
    Floor[Range[100]*(1 - Log[Log[2]])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 - log(log(2)); for (n = 1, 2000, write("b059567.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1 - log(log(2)))). - Michel Marcus, Jan 04 2015

A059568 Beatty sequence for 1 - 1/log(log(2)).

Original entry on oeis.org

3, 7, 11, 14, 18, 22, 26, 29, 33, 37, 41, 44, 48, 52, 55, 59, 63, 67, 70, 74, 78, 82, 85, 89, 93, 96, 100, 104, 108, 111, 115, 119, 123, 126, 130, 134, 137, 141, 145, 149, 152, 156, 160, 164, 167, 171, 175, 178, 182, 186, 190, 193, 197, 201, 205, 208, 212, 216
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059567.
Cf. A074785.

Programs

  • Mathematica
    Floor[Range[100]*(1 - 1/Log[Log[2]])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 - 1/log(log(2)); for (n = 1, 2000, write("b059568.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1 - 1/log(log(2)))). - Michel Marcus, Jan 04 2015

A248472 Decimal expansion of C_1 = gamma + log(log(2)) - 2*Ei(-log(2)), one of the Tauberian constants, where Ei is the exponential integral function.

Original entry on oeis.org

9, 6, 8, 0, 4, 4, 8, 3, 0, 4, 4, 2, 0, 4, 4, 4, 8, 7, 0, 4, 8, 4, 8, 7, 3, 0, 1, 1, 2, 2, 8, 5, 4, 9, 2, 2, 6, 9, 0, 3, 6, 3, 9, 7, 0, 0, 5, 9, 2, 4, 6, 3, 2, 9, 6, 4, 0, 9, 3, 1, 4, 0, 4, 6, 8, 3, 4, 1, 5, 6, 2, 4, 9, 1, 1, 6, 6, 1, 3, 1, 4, 3, 5, 9, 1, 5, 1, 2, 0, 1, 8, 1, 6, 6, 4, 2, 9, 5, 8, 9, 2, 4, 2
Offset: 0

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			0.96804483044204448704848730112285492269036397005924632964...
		

Crossrefs

Programs

  • Maple
    evalf(gamma + log(log(2)) - 2*Ei(-log(2)), 120); # Vaclav Kotesovec, Oct 27 2014
  • Mathematica
    C1 = EulerGamma + Log[Log[2]] - 2*ExpIntegralEi[-Log[2]]; RealDigits[C1, 10, 103] // First
  • PARI
    Euler + log(log(2)) + 2*eint1(log(2)) \\ Altug Alkan, Sep 05 2018

Formula

C_1 also equals gamma + log(log(2)) + 2*Gamma(0, log(2)), where Gamma is the incomplete gamma function.

A171990 Least integer a(n) for which the iterated function log, iterated n times, is defined.

Original entry on oeis.org

1, 2, 3, 16, 3814280
Offset: 1

Views

Author

Keywords

Comments

Log(a(1)) is defined if a(1) > 0, so a(1) = 1.
Log(log(a(2))) is defined if log(a(2)) > 0 => a(2) > 1 => a(2) = 2.
The sequence grows rapidly: a(6) = 2.33150...10^1656520, and is too large to include here.

Examples

			a(2) = 2 because log(log(2)) is defined and log(log(1)) is not;
a(3) = 3 because log(log(log(3))) is defined;
a(4) = 16 because log(log(log(log(16)))) is defined.
From _Robert G. Wilson v_, Jul 05 2022: (Start)
a(3) = ceiling(A001113).
a(4) = ceiling(A073226).
a(5) = ceiling(A073227).
a(6) = ceiling(A085667). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(1, my(s=k, i=0); while(s > 0, s=log(s); if(s > 0, i++)); if(i==n-1, return(k)); k++) \\ Felix Fröhlich, Nov 22 2015

Formula

For n > 2, a(n) = ceiling(e^(e^(...))) where e appears n-2 times.

A193019 -log(log(2)) / log(2).

Original entry on oeis.org

5, 2, 8, 7, 6, 6, 3, 7, 2, 9, 4, 4, 8, 9, 7, 6, 1, 4, 2, 4, 7, 4, 9, 7, 7, 7, 9, 7, 7, 8, 8, 1, 4, 8, 1, 5, 1, 8, 7, 2, 3, 7, 0, 6, 3, 6, 8, 3, 3, 1, 9, 1, 0, 7, 6, 2, 7, 4, 6, 9, 6, 4, 3, 5, 9, 6, 5, 3, 1, 8, 5, 4, 9, 9, 5, 8, 0, 7, 9, 5, 9, 6, 8, 4, 9, 0, 7
Offset: 0

Views

Author

Keywords

Comments

This is the value for which 2^x - x is minimized.

Examples

			-log(log(2)) / log(2) = .5287663729448976142474977797788....
		

Crossrefs

A196565 Decimal expansion of log(log(4)).

Original entry on oeis.org

3, 2, 6, 6, 3, 4, 2, 5, 9, 9, 7, 8, 2, 8, 0, 9, 8, 2, 4, 0, 4, 7, 9, 2, 9, 6, 3, 2, 2, 5, 5, 0, 7, 0, 9, 8, 6, 2, 1, 2, 3, 6, 6, 8, 6, 5, 2, 3, 1, 4, 9, 9, 9, 1, 0, 6, 7, 0, 0, 2, 2, 9, 5, 8, 2, 2, 8, 3, 2, 0, 0, 6, 6, 5, 0, 3, 4, 1, 9, 7, 7, 0, 5, 6, 4, 0, 7, 5
Offset: 0

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Examples

			0.3266342599782809824047929632255070986212366865231499910670022958228...
		

Crossrefs

Programs

Formula

From Amiram Eldar, Jun 12 2023: (Start)
Equals log(A016627).
Equals log(2) + log(log(2)) = A002162 - A074785. (End)

A196566 Decimal expansion of log(log(5)).

Original entry on oeis.org

4, 7, 5, 8, 8, 4, 9, 9, 5, 3, 2, 7, 1, 1, 0, 6, 2, 1, 0, 2, 2, 5, 1, 7, 2, 1, 3, 5, 5, 6, 5, 6, 8, 4, 9, 9, 6, 1, 7, 5, 4, 9, 7, 8, 6, 1, 7, 4, 9, 9, 7, 4, 9, 9, 7, 4, 8, 2, 8, 3, 2, 0, 5, 3, 0, 1, 7, 8, 5, 6, 3, 3, 5, 7, 5, 0, 3
Offset: 0

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Examples

			log(log(5)) = 0.4758849953271106210...
		

Crossrefs

Programs

Showing 1-10 of 11 results. Next