cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A338522 Number of cyclic Latin squares of order n.

Original entry on oeis.org

1, 2, 12, 48, 480, 1440, 30240, 161280, 2177280, 14515200, 399168000, 1916006400, 74724249600, 523069747200, 10461394944000, 167382319104000, 5690998849536000, 38414242234368000, 2189611807358976000, 19463216065413120000, 613091306060513280000
Offset: 1

Views

Author

Eduard I. Vatutin, Nov 01 2020

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places.
Equivalently, a Latin square is cyclic if and only if each row is a cyclic permutation of the first row and each column is a cyclic permutation of the first column.

Examples

			For n=5 there are 4 cyclic Latin squares with the first row in natural order:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
and 4*5! = 480 cyclic Latin squares.
		

Crossrefs

Formula

a(n) = phi(n) * n!.
a(n) = A000010(n) * A000142(n).

A352620 Irregular triangle read by rows which are rows of successive n X n matrices M(n) with entries M(n)[i,j] = i*j mod n+1.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 1, 2, 3, 4, 2, 4, 1, 3, 3, 1, 4, 2, 4, 3, 2, 1, 1, 2, 3, 4, 5, 2, 4, 0, 2, 4, 3, 0, 3, 0, 3, 4, 2, 0, 4, 2, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 2, 4, 6, 1, 3, 5, 3, 6, 2, 5, 1, 4, 4, 1, 5, 2, 6, 3, 5, 3, 1, 6, 4, 2, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Luca Onnis, Mar 24 2022

Keywords

Comments

Each matrix represents all possible products between the elements of Z_(n+1), where Z_k is the ring of integers mod k.
Those matrices are symmetric.
The first row is equal to the first column which is equal to 1,2,...,n.

Examples

			Matrices begin:
  n=1:  1,
  n=2:  1, 2,
        2, 1,
  n=3:  1, 2, 3,
        2, 0, 2,
        3, 2, 1,
  n=4:  1, 2, 3, 4,
        2, 4, 1, 3,
        3, 1, 4, 2,
        4, 3, 2, 1;
For example, the 6 X 6 matrix generated by Z_7 is the following:
  1 2 3 4 5 6
  2 4 6 1 3 5
  3 6 2 5 1 4
  4 1 5 2 6 3
  5 3 1 6 4 2
  6 5 4 3 2 1
The trace of this matrix is 14 = A048153(7).
		

Crossrefs

Cf. A048153 (traces), A349099 (permanents), A160255 (sum entries), A088922 (ranks).
Cf. A074930.

Programs

  • Mathematica
    Flatten[Table[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], {p, 1, 10}]]

A349099 a(n) is the permanent of the n X n matrix M(n) defined as M(n)[i,j] = i*j (mod n + 1).

Original entry on oeis.org

1, 1, 5, 32, 1074, 12600, 1525292, 34078720, 4072850100, 263459065600, 106809546673488, 2254519427530752, 3172225081523720416, 210351382651302645760, 45654014718074873700000, 11122845097194072534155264, 18156837198112938091803999360, 795289872611524024920215715840
Offset: 0

Views

Author

Stefano Spezia, Mar 25 2022

Keywords

Comments

Det(M(n)) = 0 iff n = 4 or n > 5.
Rank(M(n)) = A088922(n+1).
Tr(M(n)) = A048153(n+1).

Examples

			See A352620 for the examples of matrix M(n).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](
             Matrix(n, (i, j)-> (i*j) mod (n+1)))):
    seq(a(n), n=0..16);  # Alois P. Heinz, Mar 25 2022
  • Mathematica
    Join[{1},Table[Permanent[Table[Mod[j*Table[i, {i, n}], n+1], {j, n}]], {n, 17}]]
  • PARI
    a(n) = matpermanent(matrix(n,n,i,j,(i*j)%(n+1))); \\ Michel Marcus, Mar 26 2022

A353192 Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k) * x^k / k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 16, 110, 986, 10202, 126288, 1770120, 27939192, 489658632, 9455296896, 198951693360, 4537680805776, 111426422418768, 2931467216681856, 82273083792879744, 2453340521239749504, 77458777017799833216, 2581489882182061744128
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    phi[k_] := phi[k] = EulerPhi[k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * phi[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*eulerphi(j)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A074930(k) * binomial(n,k) * a(n-k).
Showing 1-4 of 4 results.