cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046883 Automorphic primes: primes p such that p is k-th prime and p ends in k.

Original entry on oeis.org

17, 99551, 4303027, 6440999, 14968819, 95517973, 527737957, 1893230839, 1246492090901, 12426836115943, 21732382677641, 154895576080181, 2677628540590583, 133475456543097857, 820396537622790811
Offset: 1

Views

Author

Keywords

Comments

a(13) > 10^15. - Donovan Johnson, Mar 26 2010

Examples

			p(7)=17, p(9551)=99551, p(303027)=4303027, p(440999)=6440999, p(968819)=14968819, p(5517973)=95517973.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ Prime[n], 10^Ceiling[ Log[10, n]]] == n, Print[Prime[n]]], {n, 1, 100000000, 2}] (* Robert G. Wilson v, May 21 2004 *) (* fixed by Ivan N. Ianakiev, Apr 15 2022 *)
    fQ[n_]:=StringPosition[ToString[Prime[n]],ToString[n]][[1,2]]==
    IntegerLength[Prime[n]]; Prime[Select[Range[1,5517973,2],fQ]]//Quiet (* Ivan N. Ianakiev, Apr 15 2022 *)
    Select[Table[{n,Prime[n]},{n,552*10^4}],Mod[#[[2]],10^IntegerLength[#[[1]]]]==#[[1]]&][[;;,2]] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Mar 18 2025 *)

Extensions

One more term from Zak Seidov, Sep 27 2002
Corrected by Lior Manor, Oct 14 2002
a(7)-a(8) from Robert G. Wilson v, May 21 2004
a(9)-a(12) from Donovan Johnson, Mar 26 2010
a(13)-a(14) from Chai Wah Wu, Apr 05 2021
a(15) from Chai Wah Wu, Apr 07 2021

A067248 Numbers k such that the digits of prime(k) end in k.

Original entry on oeis.org

7, 9551, 303027, 440999, 968819, 5517973, 27737957, 93230839, 46492090901, 426836115943, 732382677641, 4895576080181, 77628540590583, 3475456543097857, 20396537622790811
Offset: 1

Views

Author

Joseph L. Pe, Feb 20 2002

Keywords

Comments

There is no further term up to 115000000. - Farideh Firoozbakht, Jan 01 2007
a(13) > pi(10^15). - Donovan Johnson, May 08 2010

Examples

			Prime(968819) = 14968819 which ends in 968819, so 968819 is a term of the sequence.
		

Crossrefs

Corresponding primes are in A046883.

Programs

  • Mathematica
    (* returns true if a ends with b, false otherwise *) f[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; e = StringLength[c]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[2]] == e, r = True]]; r]; Do[If[f[Prime[n], n], Print[n]], {n, 1, 10^6}]

Extensions

a(6) from Zak Seidov, Sep 27 2002
a(7)-a(8) from Farideh Firoozbakht, Jan 01 2007
a(9)-a(12) from Donovan Johnson, May 08 2010
a(13)-a(14) from Chai Wah Wu, Apr 05 2021
a(15) from Chai Wah Wu, Apr 07 2021

A068575 Numbers n such that, as strings, n is a substring of prime(n).

Original entry on oeis.org

7, 6455, 6456, 6457, 6459, 6460, 6466, 9551, 303027, 440999, 968819, 5517973, 27737957, 93230839, 96664044, 46492090901
Offset: 1

Views

Author

Joseph L. Pe, Mar 26 2002

Keywords

Comments

pi(2*10^12) < a(17) <= 426836115943. a(18) <= 732382677641. a(19) <= 4895576080181. [From Donovan Johnson, May 08 2010]

Examples

			Treated as strings, 6455 is a substring of 64553 = Prime(6455), so 6455 belongs to the sequence.
Pairs {n, prime(n)}: {7, 17}, {6455, 64553}, {6456, 64567}, {6457, 64577}, {6459, 64591}, {6460, 64601}, {6466, 64661}, {9551, 99551}, {303027, 4303027}, {440999, 6440999}, {968819, 14968819}, {5517973, 95517973}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], StringPosition[ToString[Prime[ # ]], ToString[ # ]] != {} &]
    Select[Range[97*10^4],SequenceCount[IntegerDigits[Prime[#]],IntegerDigits[#]]>0&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Nov 14 2022 *)

Extensions

More terms from Zak Seidov, Sep 27 2002
Three more terms from Farideh Firoozbakht, Jan 06 2007
a(16) from Donovan Johnson, May 08 2010

A103174 Numbers k with increasing digits such that the digits of k appear among the digits of the k-th prime number.

Original entry on oeis.org

7, 5789, 234567, 345679
Offset: 1

Views

Author

Labos Elemer, Feb 28 2005

Keywords

Comments

We assume digits of k are in increasing order. No terms < 10^7.
Sequence is complete. - Giovanni Resta, Apr 29 2017

Examples

			n: {7, 5789, 234567, 345679}
prime(n): {17, 57089, 3264857, 4956733}
		

Crossrefs

Programs

  • Mathematica
    Select[Rest@ Union[FromDigits /@ Subsets@ Range@ 9], SubsetQ @@ IntegerDigits@ {Prime@#, #} &] (* Giovanni Resta, Apr 29 2017 *)

Extensions

Definition edited by Giovanni Resta, May 01 2017

A236469 Primes p such that pi(p) = floor(p/10), where pi is the prime counting function.

Original entry on oeis.org

64553, 64567, 64577, 64591, 64601, 64661
Offset: 1

Views

Author

K. D. Bajpai, Jan 26 2014

Keywords

Comments

No further term below 32452843.
The first three terms in the sequence are consecutive primes.
Is this sequence finite?
No further term below 179424673.
The prime number theorem implies that this sequence is finite. Rosser proves that pi(x) < x/(log x - 4) for x >= 55, which can be used to show that there are no more terms. - Eric M. Schmidt, Aug 04 2014

Crossrefs

Programs

  • Maple
    KD := proc() local a,b; a:=ithprime(n); b:=floor(a/10); if n=b then RETURN (a);fi; end: seq(KD(), n=1..1000000);
  • Mathematica
    Do[p = Prime[n]; k = Floor[p/10]; If[k == n, Print[p]], {n, 10^6}] (* Bajpai *)
    Select[Prime[Range[6500]], PrimePi[#] == Floor[#/10] &] (* Alonso del Arte, Jan 26 2014 *)
Showing 1-5 of 5 results.