cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115964 Denominator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Numerators are in A115963.
Also the primorials cubed. - Reikku Kulon, Sep 18 2008

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Cf. A115963 (numerators).
Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
Cf. A061742, A100778. - Reikku Kulon, Sep 18 2008

Programs

Formula

a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
a(n) = A002110(n)^3. - Reikku Kulon, Sep 18 2008

A061015 Numerator of Sum_{i=1..n} 1/p(i)^2, p(i) = i-th prime.

Original entry on oeis.org

1, 13, 361, 18589, 2293369, 392915461, 114454369129, 41578647715669, 22089188627685001, 18626778064527922741, 17942190650501641587001, 24603083510737933160021269, 41412850736015889039729489289, 76664929233749755566050236079461
Offset: 1

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), May 21 2001

Keywords

Crossrefs

Programs

  • Maple
    summ := 0: for n from 1 to 100 do if (isprime(n)) then summ := summ + 1/n^2; printf("%d,", numer(summ)); #printf("%d,", denom(summ)); end if; od; evalf(summ);
  • Mathematica
    Numerator[Accumulate[1/Prime[Range[13]]^2]] (* Jayanta Basu, Jul 14 2013 *)
  • Python
    from sympy import prime
    from fractions import Fraction
    from itertools import accumulate, count, islice
    def A061015gen(): yield from map(lambda x: x.numerator, accumulate(Fraction(1, prime(k)**2) for k in count(1)))
    print(list(islice(A061015gen(), 20))) # Michael S. Branicky, Jun 26 2022

Formula

a(1) = 1; a(n) = a(n-1)*p(n)^2+(p(1)*...*p(n-1))^2. - Zak Seidov, Sep 28 2002

Extensions

a(14) and beyond from Michael S. Branicky, Jun 26 2022

A075986 Numerator of 1+1/prime(1)^2+ ... + 1/prime(n)^2 where prime(k) is the k-th prime.

Original entry on oeis.org

1, 5, 49, 1261, 62689, 7629469, 1294716361, 375074829229, 135662633811769, 71859617272521901, 60483708554835755641, 58166700851687469003901, 79670437976161330893757369, 133981073592392620630139873389
Offset: 0

Views

Author

Zak Seidov, Sep 28 2002

Keywords

Comments

The sum is similar to that in A061015 with an additional 1. The sum in the definition has limit about 1.45224742. The case of reciprocal cubes is in A075987.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+Prime[i]^2 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006

Examples

			a(2) = 49 so a(3) = 49*p(3)^2 + (2*3)^2 = 49*25 + 36 = 1261.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.

Crossrefs

Programs

  • Mathematica
    Table[Det[DiagonalMatrix[Table[Prime[i]^2,{i,1,n}]]+1],{n,1,15}] (* Alexander Adamchuk, Jul 08 2006 *)
    Accumulate[Join[{1},1/Prime[Range[20]]^2]]//Numerator (* Harvey P. Dale, May 08 2023 *)

Formula

a(0)=1; a(n)=a(n-1)*prime(n)^2+(prime(1)*...*prime(n-1))^2.

Extensions

Edited by Dean Hickerson, Sep 30 2002

A115963 Numerator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

1, 35, 4591, 1601713, 2141141003, 4716413174591, 23198819007792583, 159253748925534977797, 1938552948676080555065099, 47290471293028435532185602511, 1409101231790431848106470385672201
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Denominators = A115964. See also: A024451 Numerator of Sum_{i=1..n} 1/prime(i). A002110 Primorial [denominator of Numerator of Sum_{i=1..n} 1/prime(i)]. A061015 Numerator of Sum_{i=1..n} 1/prime(i)^2.

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[1/Prime[Range[20]]^3]//Numerator (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = Numerator of Sum_{i=1..n} 1/A000040(i)^3.
Showing 1-4 of 4 results.