cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A092062 Numbers k such that A061015(k) is prime.

Original entry on oeis.org

2, 10, 18, 36, 90, 759
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 20 2004

Keywords

Comments

a(6) > 447 for a(6) the numerator has more than 2673 digits.
a(7) > 1850. - Michael S. Branicky, Jun 27 2022

Examples

			1/2^2 = 1/4 but 1 is not prime, 1/2^2 + 1/3^2 = 13/36 and 13 is prime so a(1)=2.
		

Crossrefs

Cf. A061015.

Programs

  • PARI
    sm(n)= s=0;for(i=1,n,s=s+1/(prime(i)^2));return(s);
    for (i=1,400,if(isprime(numerator(sm(i))),print1(i,",")))
    
  • Python
    # uses A061015gen() and imports from A061015
    from sympy import isprime
    def agen():
        yield from (k for k, ak in enumerate(A061015gen(), 1) if isprime(ak))
    print(list(islice(agen(), 5))) # Michael S. Branicky, Jun 27 2022

Formula

Numbers k such that numerator of (Sum_{i=1..k} 1/prime(i)^2) is prime

Extensions

a(6) from Alexander Adamchuk, Sep 16 2010

A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0

Views

Author

Keywords

Comments

Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
Apart from the initial 0, a subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i) [implied by Henry Bottomley's Sep 27 2006 formula], but neither does p^p divide a(i) when 0 < i < A000720(p), as then p^p > a(i). See A074107, which gives an upper bound for this sequence. - Antti Karttunen, Nov 19 2024

Examples

			0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.

Crossrefs

Denominators are A002110.
Row sums of A077011 and A258566.
Subsequence of A048103 (after the initial 0).
Cf. A053144 (a lower bound), A074107 (an upper bound).
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes), A377992 (antiderivatives of the terms > 1 of this sequence).

Programs

  • Magma
    [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ];  // Bruno Berselli, Apr 11 2011
    
  • Maple
    h:= n-> add(1/(ithprime(i)),i=1..n);
    t1:=[seq(h(n),n=0..50)];
    t1a:=map(numer,t1); # A024451
    t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
  • Mathematica
    a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18]  (* Jean-François Alcover, Apr 11 2011 *)
    f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A024451 *)
    (* Clark Kimberling, Dec 29 2011 *)
    Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
    
  • Python
    from math import prod
    from sympy import prime
    def A024451(n):
        q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
        return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022

Formula

Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
For n >= 0, A053144(n) <= a(n) <= A074107(n) < A070826(1+n).
(End)

Extensions

a(0)=0 prepended by Alois P. Heinz, Jun 26 2015

A115964 Denominator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Numerators are in A115963.
Also the primorials cubed. - Reikku Kulon, Sep 18 2008

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Cf. A115963 (numerators).
Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
Cf. A061742, A100778. - Reikku Kulon, Sep 18 2008

Programs

Formula

a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
a(n) = A002110(n)^3. - Reikku Kulon, Sep 18 2008

A075986 Numerator of 1+1/prime(1)^2+ ... + 1/prime(n)^2 where prime(k) is the k-th prime.

Original entry on oeis.org

1, 5, 49, 1261, 62689, 7629469, 1294716361, 375074829229, 135662633811769, 71859617272521901, 60483708554835755641, 58166700851687469003901, 79670437976161330893757369, 133981073592392620630139873389
Offset: 0

Views

Author

Zak Seidov, Sep 28 2002

Keywords

Comments

The sum is similar to that in A061015 with an additional 1. The sum in the definition has limit about 1.45224742. The case of reciprocal cubes is in A075987.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+Prime[i]^2 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006

Examples

			a(2) = 49 so a(3) = 49*p(3)^2 + (2*3)^2 = 49*25 + 36 = 1261.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.

Crossrefs

Programs

  • Mathematica
    Table[Det[DiagonalMatrix[Table[Prime[i]^2,{i,1,n}]]+1],{n,1,15}] (* Alexander Adamchuk, Jul 08 2006 *)
    Accumulate[Join[{1},1/Prime[Range[20]]^2]]//Numerator (* Harvey P. Dale, May 08 2023 *)

Formula

a(0)=1; a(n)=a(n-1)*prime(n)^2+(prime(1)*...*prime(n-1))^2.

Extensions

Edited by Dean Hickerson, Sep 30 2002

A115963 Numerator of Sum_{i=1..n} 1/prime(i)^3.

Original entry on oeis.org

1, 35, 4591, 1601713, 2141141003, 4716413174591, 23198819007792583, 159253748925534977797, 1938552948676080555065099, 47290471293028435532185602511, 1409101231790431848106470385672201
Offset: 1

Views

Author

Jonathan Vos Post, Mar 14 2006

Keywords

Comments

Denominators = A115964. See also: A024451 Numerator of Sum_{i=1..n} 1/prime(i). A002110 Primorial [denominator of Numerator of Sum_{i=1..n} 1/prime(i)]. A061015 Numerator of Sum_{i=1..n} 1/prime(i)^2.

Examples

			1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[1/Prime[Range[20]]^3]//Numerator (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = Numerator of Sum_{i=1..n} 1/A000040(i)^3.

A241189 Numerator of Sum_{i=1..n} 1/(prime(i)*prime(i+1)).

Original entry on oeis.org

1, 7, 11, 127, 1693, 29243, 561623, 13019431, 379503437, 11809225121, 438235268123, 18007758091069, 775817745542929, 36524284093223105, 1938403609207158571, 2160165866032831207, 131893095784520401909, 8844093116997411126541, 628373208972323386101329, 45900898298568589325230523
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2014, based on a suggestion from Timothy Varghese

Keywords

Comments

a(371) has 1002 decimal digits. - Michael De Vlieger, Jan 27 2016

Examples

			1/6, 7/30, 11/42, 127/462, 1693/6006, 29243/102102, 561623/1939938, 13019431/44618574, 379503437/1293938646, 11809225121/40112098026, 438235268123/1484147626962, ...
		

Crossrefs

Programs

  • Maple
    g:= n-> add(1/(ithprime(i)*ithprime(i+1)),i=1..n);
    t1:=[seq(g(n),n=1..20)];
    t1a:=map(numer,t1); # A241189
    t1b:=map(denom,t1); # A241190
  • Mathematica
    Table[Numerator@ Sum[1/(Prime[i + 1] Prime@ i), {i, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
    Accumulate[1/#&/@(Times@@@Partition[Prime[Range[25]],2,1])]//Numerator (* Harvey P. Dale, Mar 14 2023 *)

A075987 Numerator(1+1/prime(1)^3+ ... + 1/prime(n)^3) where prime(k) is the k-th prime.

Original entry on oeis.org

1, 9, 251, 31591, 10862713, 14467532003, 31797494201591, 156248170093443583, 1071839248022015186797, 13041980716182955257968099, 318091971114753602661286869511, 9476548712979446302049526230869201
Offset: 0

Views

Author

Zak Seidov, Sep 28 2002

Keywords

Comments

The sum in the sequence has limit 1.1747626393. The case of reciprocal squares is in A075986.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+prime(i)^3 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006

Examples

			a(2) = 251 so a(3) = 251*p(3)^3 + (2*3)^3 = 251*125 + 216 = 31591.
		

Crossrefs

Programs

  • Mathematica
    Table[Det[DiagonalMatrix[Table[Prime[i]^3,{i,1,n}]]+1],{n,1,15}] (* Alexander Adamchuk, Jul 08 2006 *)
  • PARI
    a(n) = numerator(1 + sum(k=1, n, 1/prime(k)^3)); \\ Michel Marcus, May 31 2022

Formula

a(0) = 1; a(n) = a(n-1)*prime(n)^3+(prime(1)*...*prime(n-1))^3.

A125708 Numbers k such that A115963(k) is prime.

Original entry on oeis.org

3, 5, 9, 43, 150, 300, 516, 1254
Offset: 1

Views

Author

Alexander Adamchuk, Feb 01 2007, Mar 01 2007

Keywords

Comments

A115963(n) is the numerator of Sum_{k=1..n} 1/prime(k)^3.
a(9) > 5000. - Michael S. Branicky, Aug 04 2024

Crossrefs

Programs

  • Mathematica
    f=0;Do[p=Prime[n];f=f+1/p^3;g=Numerator[f];If[PrimeQ[g],Print[{n,p,g}]],{n,1,50}]

Extensions

a(6) from Alexander Adamchuk, Sep 16 2010
a(7)-a(8) from Amiram Eldar, Feb 18 2019

A126225 Least number k > 0 such that the numerator of Sum_{i=1..k} 1/prime(i)^n is a prime.

Original entry on oeis.org

2, 2, 3, 2, 3, 5, 3, 11, 3, 22
Offset: 1

Views

Author

Alexander Adamchuk, Mar 08 2007

Keywords

Comments

a(12) > 80, a(13) = 30, a(14) = 16, a(18) = 7, a(19) = 3. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
a(11) > 200, a(12) > 200. - Michel Marcus, May 27 2019
If they exist, a(11) > 1263; a(17) > 954; a(22) > 795; a(23) > 720; a(25) > 570; a(12) = 799, a(15) = 313, a(16) = 780, a(20) = 433, a(21) = 7, a(24) = 4, a(27) = 12, a(29) = 37. - J.W.L. (Jan) Eerland, Jan 26 2023

Examples

			a(1) = 2 corresponds to A024451(2) = 5, a prime.
a(2) = 2 corresponds to A061015(2) = 13, a prime.
		

Crossrefs

Cf. A024451 (1/p), A061015 (1/p^2), A115963 (1/p^3).

Programs

  • Mathematica
    a[n_] := Block[{i = 1, sum = 0}, While[True, sum += 1/Prime[i]^n; If[PrimeQ[Numerator@sum], Return[i]]; i++ ]] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
    Table[y[x_,y_]:=Numerator[FullSimplify[Sum[1/Prime[m]^x,{m,1,y}]]];k=1;Monitor[Parallelize[While[True,If[PrimeQ[y[n,k]],Break[]];k++];k],k],{n,1,10}] (* J.W.L. (Jan) Eerland, Jan 25 2023 *)
  • PARI
    a(n) = {my(k=1, s=1/prime(k)^n); while (! isprime(numerator(s)), k++; s += 1/prime(k)^n); k;} \\ Michel Marcus, May 27 2019
Showing 1-9 of 9 results.