A092062
Numbers k such that A061015(k) is prime.
Original entry on oeis.org
2, 10, 18, 36, 90, 759
Offset: 1
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 20 2004
1/2^2 = 1/4 but 1 is not prime, 1/2^2 + 1/3^2 = 13/36 and 13 is prime so a(1)=2.
-
sm(n)= s=0;for(i=1,n,s=s+1/(prime(i)^2));return(s);
for (i=1,400,if(isprime(numerator(sm(i))),print1(i,",")))
-
# uses A061015gen() and imports from A061015
from sympy import isprime
def agen():
yield from (k for k, ak in enumerate(A061015gen(), 1) if isprime(ak))
print(list(islice(agen(), 5))) # Michael S. Branicky, Jun 27 2022
A024451
a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
Original entry on oeis.org
0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
Subsequence of
A048103 (after the initial 0).
Cf.
A369972 (k where prime(1+k)|a(k)),
A369973 (corresponding primorials),
A293457 (corresponding primes),
A377992 (antiderivatives of the terms > 1 of this sequence).
-
[ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
-
h:= n-> add(1/(ithprime(i)),i=1..n);
t1:=[seq(h(n),n=0..50)];
t1a:=map(numer,t1); # A024451
t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
-
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18] (* Jean-François Alcover, Apr 11 2011 *)
f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A024451 *)
(* Clark Kimberling, Dec 29 2011 *)
Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
-
from sympy import prime
from fractions import Fraction
def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
-
from math import prod
from sympy import prime
def A024451(n):
q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
A115964
Denominator of Sum_{i=1..n} 1/prime(i)^3.
Original entry on oeis.org
8, 216, 27000, 9261000, 12326391000, 27081081027000, 133049351085651000, 912585499096480209000, 11103427767506874702903000, 270801499821725167129101267000, 8067447481189014453943055845197000
Offset: 1
1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
Cf.
A024451 (numerator of sum_{i=1..n} 1/prime(i)),
A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)),
A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
A075986
Numerator of 1+1/prime(1)^2+ ... + 1/prime(n)^2 where prime(k) is the k-th prime.
Original entry on oeis.org
1, 5, 49, 1261, 62689, 7629469, 1294716361, 375074829229, 135662633811769, 71859617272521901, 60483708554835755641, 58166700851687469003901, 79670437976161330893757369, 133981073592392620630139873389
Offset: 0
a(2) = 49 so a(3) = 49*p(3)^2 + (2*3)^2 = 49*25 + 36 = 1261.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.
-
Table[Det[DiagonalMatrix[Table[Prime[i]^2,{i,1,n}]]+1],{n,1,15}] (* Alexander Adamchuk, Jul 08 2006 *)
Accumulate[Join[{1},1/Prime[Range[20]]^2]]//Numerator (* Harvey P. Dale, May 08 2023 *)
A115963
Numerator of Sum_{i=1..n} 1/prime(i)^3.
Original entry on oeis.org
1, 35, 4591, 1601713, 2141141003, 4716413174591, 23198819007792583, 159253748925534977797, 1938552948676080555065099, 47290471293028435532185602511, 1409101231790431848106470385672201
Offset: 1
1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
A241189
Numerator of Sum_{i=1..n} 1/(prime(i)*prime(i+1)).
Original entry on oeis.org
1, 7, 11, 127, 1693, 29243, 561623, 13019431, 379503437, 11809225121, 438235268123, 18007758091069, 775817745542929, 36524284093223105, 1938403609207158571, 2160165866032831207, 131893095784520401909, 8844093116997411126541, 628373208972323386101329, 45900898298568589325230523
Offset: 1
1/6, 7/30, 11/42, 127/462, 1693/6006, 29243/102102, 561623/1939938, 13019431/44618574, 379503437/1293938646, 11809225121/40112098026, 438235268123/1484147626962, ...
-
g:= n-> add(1/(ithprime(i)*ithprime(i+1)),i=1..n);
t1:=[seq(g(n),n=1..20)];
t1a:=map(numer,t1); # A241189
t1b:=map(denom,t1); # A241190
-
Table[Numerator@ Sum[1/(Prime[i + 1] Prime@ i), {i, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
Accumulate[1/#&/@(Times@@@Partition[Prime[Range[25]],2,1])]//Numerator (* Harvey P. Dale, Mar 14 2023 *)
A075987
Numerator(1+1/prime(1)^3+ ... + 1/prime(n)^3) where prime(k) is the k-th prime.
Original entry on oeis.org
1, 9, 251, 31591, 10862713, 14467532003, 31797494201591, 156248170093443583, 1071839248022015186797, 13041980716182955257968099, 318091971114753602661286869511, 9476548712979446302049526230869201
Offset: 0
a(2) = 251 so a(3) = 251*p(3)^3 + (2*3)^3 = 251*125 + 216 = 31591.
-
Table[Det[DiagonalMatrix[Table[Prime[i]^3,{i,1,n}]]+1],{n,1,15}] (* Alexander Adamchuk, Jul 08 2006 *)
-
a(n) = numerator(1 + sum(k=1, n, 1/prime(k)^3)); \\ Michel Marcus, May 31 2022
A125708
Numbers k such that A115963(k) is prime.
Original entry on oeis.org
3, 5, 9, 43, 150, 300, 516, 1254
Offset: 1
-
f=0;Do[p=Prime[n];f=f+1/p^3;g=Numerator[f];If[PrimeQ[g],Print[{n,p,g}]],{n,1,50}]
A126225
Least number k > 0 such that the numerator of Sum_{i=1..k} 1/prime(i)^n is a prime.
Original entry on oeis.org
2, 2, 3, 2, 3, 5, 3, 11, 3, 22
Offset: 1
a(1) = 2 corresponds to A024451(2) = 5, a prime.
a(2) = 2 corresponds to A061015(2) = 13, a prime.
-
a[n_] := Block[{i = 1, sum = 0}, While[True, sum += 1/Prime[i]^n; If[PrimeQ[Numerator@sum], Return[i]]; i++ ]] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
Table[y[x_,y_]:=Numerator[FullSimplify[Sum[1/Prime[m]^x,{m,1,y}]]];k=1;Monitor[Parallelize[While[True,If[PrimeQ[y[n,k]],Break[]];k++];k],k],{n,1,10}] (* J.W.L. (Jan) Eerland, Jan 25 2023 *)
-
a(n) = {my(k=1, s=1/prime(k)^n); while (! isprime(numerator(s)), k++; s += 1/prime(k)^n); k;} \\ Michel Marcus, May 27 2019
Showing 1-9 of 9 results.
Comments