cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006463 Convolve natural numbers with characteristic function of triangular numbers.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 45, 50, 55, 60, 65, 70, 76, 82, 88, 94, 100, 106, 112, 119, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 340, 350, 360
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) = length (i.e., number of elements minus 1) of longest chain in partition lattice Par(n). Par(n) is the set of partitions of n under "dominance order": partition P is <= partition Q iff the sum of the largest k parts of P is <= the corresponding sum for Q for all k.
If C_n(q, t) are the (q, t)-Catalan polynomials, then p_n(x) := C_n(x, x) is a polynomial in x such that a(n) is the degree of the lowest degree term. The sequence of polynomials p_n(x) = 1, 1, 2*x, x^2 + 4*x^3, 3*x^4 + 4*x^5 + 7*x^6 + ... while the coefficient of the lowest degree term is A074909(n). - Michael Somos, Jan 09 2019
If f is a strictly convex function computed on partitions of n (A000041), then a(n)+1 provides a lower bound on the number of distinct values of n taken by f across all partitions of n. - Noah A Rosenberg, Apr 18 2025

Examples

			a(6)=8; one longest chain consists of these 9 partitions: 6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1. Others are obtained by changing 3+3 to 4+1+1 or 2+2+2 to 3+1+1+1.
G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + 14*x^8 + 17*x^9 + ...
		

References

  • N. A. Rosenberg, Mathematical Properties of Population-Genetic Statistics, Princeton University Press, 2025; page 113.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.2(f).

Crossrefs

0 together with the partial sums of A003056.

Programs

  • Haskell
    a006463 n = a006463_list !! n
    a006463_list = 0 : scanl1 (+) a003056_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Mathematica
    a[n_] := (x = Quotient[ Sqrt[1+8*n]-1, 2]; x*(x^2-1+3*(n-x*(x+1)/2))/3); Table[a[n], {n, 0, 58}] (* Jean-François Alcover, Apr 11 2013, after Michael Somos *)
    t = {0}; Do[Do[AppendTo[t, t[[-1]]+n], {k, 0, n}], {n, 0, 11}]; t (* Jean-François Alcover, May 10 2016, after Vladimir Joseph Stephan Orlovsky *)
    Join[{0},Table[ListConvolve[Range[x],Table[If[OddQ[Sqrt[8n+1]],1,0],{n,x}]],{x,0,60}]//Flatten] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    {a(n) = my(x); if( n<0, 0, x = (sqrtint(8*n + 1) - 1)\2; x * (x^2 - 1 + 3 * (n - x*(x+1)/2)) / 3)}; /* Michael Somos, Mar 06 2006 */
    
  • Python
    from math import isqrt
    def A006463(n): return (m:=isqrt((n<<3)+1)-1>>1)*(6*n-2-m*(m+3))//6 # Chai Wah Wu, Jun 07 2025

Formula

Let n=binomial(m+1, 2)+r, 0<=r<=m; then a(n) = (1/3)*m*(m^2+3*r-1).
G.f.: (psi(x) - 1) * x / (1 - x)^2 where psi() is a Ramanujan theta function. - Michael Somos, Mar 06 2006
a(n) = Sum_(k=0..n-1) A003056(k). - Daniele Parisse, Jul 10 2007
a(n+1) - 2*a(n) + a(n-1) = A010054(n) if n>0. - Michael Somos, May 07 2016

Extensions

Edited by Dean Hickerson, Nov 09 2002

A077765 Number of maximum-size antichains in partition lattice Par(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 2, 4, 15, 4, 2, 11, 18, 14, 53, 2, 54, 1606, 482, 104, 754, 536
Offset: 0

Views

Author

Dean Hickerson, Nov 14 2002

Keywords

Comments

Par(n) is the set of partitions of n under 'dominance order': partition P is <= partition Q iff the sum of the largest k parts of P is <= the corresponding sum for Q for all k.

Examples

			For n=10, the maximum size is A076269(10)=4. There are 2 maximum-size antichains: {5+1+1+1+1+1, 4+3+1+1+1, 4+2+2+2, 3+3+3+1} and {6+1+1+1+1, 5+2+2+1, 4+4+1+1, 4+3+3}. So a(10)=2.
		

Crossrefs

The corresponding sizes are in A076269.

Programs

  • Mathematica
    leq[p_, q_] := If[Length[p]
    				

A337206 Cardinality of maximal level sets of Gini index on integer partitions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 17, 21, 23, 28, 33, 38, 44, 52, 60, 72, 81, 95, 112, 128, 147, 175, 195, 233, 267, 305, 353, 412, 462, 533, 617, 703, 807, 932, 1052, 1210, 1389, 1569, 1785, 2060, 2315, 2642, 3023, 3405, 3876, 4413, 4968
Offset: 0

Views

Author

Grant Kopitzke, Aug 18 2020

Keywords

Comments

a(n) is a lower bound on A076269(n).

Examples

			For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
		

Crossrefs

Lower bound on A076269.

Programs

  • Maple
    b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
        end:
    a:= n-> max(coeffs(b(n$2, 0))):
    seq(a(n), n=0..61);  # Alois P. Heinz, Jan 20 2023
  • Mathematica
    m = 75;
    p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
    psn = Expand@Normal@Series[ p, {x, 0, m}];
    psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
    Map[Max, psnc]

Formula

G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
a(n) = max_{k=0..A161680(n)} A264034(n,k). - Alois P. Heinz, Jan 20 2023

Extensions

Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023

A076779 Maximum number of disjoint maximum-size antichains in partition lattice Par(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 2, 3, 7, 3, 2, 3, 4, 3, 3, 2, 5, 5, 2, 1
Offset: 0

Views

Author

Edward Early, Nov 15 2002

Keywords

Crossrefs

Extensions

a(17)-a(19) from Sean A. Irvine, Apr 16 2025
Showing 1-4 of 4 results.