A316859
Triangle read by rows constructed from A076565 as sum of greatest prime factors.
Original entry on oeis.org
6, 8, 8, 10, 10, 10, 6, 12, 12, 6, 14, 8, 14, 8, 14, 16, 16, 10, 10, 16, 16, 8, 18, 18, 6, 18, 18, 8, 20, 10, 20, 14, 14, 20, 10, 20, 22, 22, 12, 16, 22, 16, 12, 22, 22, 10, 24, 24, 8, 24, 24, 8, 24, 24, 10, 26, 12, 26, 20, 16, 26, 16, 20, 26, 12, 26, 8, 28, 14, 22, 28, 18, 18, 28, 22, 14, 28, 8
Offset: 1
{ 6}, <--- copy (1,1) of A076565, add together
{ 8, 8}, <--- copy (1,2) of A076565, reverse, and add together
{10, 10, 10}, <--- copy (1,3) of A076565, reverse, and add together
{ 6, 12, 12, 6},
{14, 8, 14, 8, 14},
{16, 16, 10, 10, 16, 16},
{ 8, 18, 18, 6, 18, 18, 8}, <=== differences with A316858 begin here
{20, 10, 20, 14, 14, 20, 10, 20},
{22, 22, 12, 16, 22, 16, 12, 22, 22},
{10, 24, 24, 8, 24, 24, 8, 24, 24, 10},
{26, 12, 26, 20, 16, 26, 16, 20, 26, 12, 26},
{ 8, 28, 14, 22, 28, 18, 18, 28, 22, 14, 28, 8}
-
gpf[n_] := FactorInteger[2 n + 1][[-1, 1]]; A076565 = Array[gpf, 12];
a = Table[A076565[[1 ;; -n]] + Reverse[A076565[[1 ;; -n]]],
{n, Length[A076565], 1, -1}];
A076567
Greatest prime divisor of 4n+6 (sum of four successive integers).
Original entry on oeis.org
5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 5, 3, 29, 31, 11, 7, 37, 13, 41, 43, 5, 47, 7, 17, 53, 11, 19, 59, 61, 7, 13, 67, 23, 71, 73, 5, 11, 79, 3, 83, 17, 29, 89, 13, 31, 19, 97, 11, 101, 103, 7, 107, 109, 37, 113, 23, 13, 17, 11, 41, 5, 127, 43, 131, 19, 5, 137, 139, 47, 13
Offset: 1
-
f:= n -> max(numtheory:-factorset(n)):
map(f, [seq(i,i=10..1000,4)]); # Robert Israel, Nov 10 2020
-
FactorInteger[#][[-1,1]]&/@(4*Range[70]+6) (* Harvey P. Dale, Mar 12 2017 *)
-
a(n) = {f = factor(4*n+6); return (f[length(f~), 1]);} \\ Michel Marcus, Apr 19 2013
-
a(n) = vecmax(factor(4*n+6)[,1]); \\ Michel Marcus, Nov 10 2020
A140538
Greatest prime factor of 2*n^4 + 1.
Original entry on oeis.org
3, 11, 163, 19, 139, 2593, 1601, 2731, 1193, 113, 227, 619, 577, 8537, 73, 43691, 55681, 209953, 307, 9697, 388963, 52057, 1091, 337, 260417, 304651, 3011, 4937, 471521, 1620001, 691, 5419, 32491, 46889, 90947, 25643, 11057, 15619, 7499, 7793
Offset: 1
a(2)= 11 because 2*2^4+1 = 33 = 3*11, greatest prime factor is 11.
-
[#f eq 0 select 1 else f[ #f][1] where f is Factorization(2*n^4 + 1): n in [1..50]]; // Vincenzo Librandi, Feb 17 2015
-
Table[Max[Transpose[FactorInteger[2 n^4 + 1]][[1]]], {n, 50}] (* Vincenzo Librandi, Feb 17 2015 *)
-
a(n) = f = factor(2*n^4+1); f[#f~,1]; \\ Michel Marcus, Aug 28 2013
A179485
Sums of two successive primes s such that s+-3 are primes.
Original entry on oeis.org
8, 100, 1120, 1220, 1300, 2240, 2380, 2414, 3536, 3634, 4906, 4940, 5566, 5740, 6706, 7240, 8864, 9224, 9394, 10136, 10850, 12040, 12476, 12586, 12920, 13180, 13334, 13754, 14630, 14720, 15134, 16270, 17710, 18430, 18800, 19916, 21014, 21320
Offset: 1
3+5=8,8-3=5(prime),8+3=11(prime),..
-
q:= 2; p:= 3;
count:= 0:
while count < 100 do
q:= p; p:= nextprime(p);
s:= q+p;
if isprime(s-3) and isprime(s+3) then
count:= count+1; A[count]:= s;
fi
od:
seq(A[i],i=1..count); # Robert Israel, Oct 25 2017
-
q=3;Select[Table[Prime[n]+Prime[n+1],{n,7!}],PrimeQ[ #-q]&&PrimeQ[ #+q]&]
Select[Total/@Partition[Prime[Range[1400]],2,1],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)
A321069
Greatest prime factor of n^3+2.
Original entry on oeis.org
3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- D. R. Heath-Brown, The largest prime factor of x^3+2, Proceedings of the London Mathematical Society, 82:3 (2000), pp. 554-596.
- Christopher Hooley, On the greatest prime factor of a cubic polynomial, Journal für die reine und angewandte Mathematik, 303 (1978), pp. 21-50.
- A. J. Irving, The largest prime factor of x^3+2, arXiv:1412.0024 [math.NT], 2014.
Greatest prime factors of polynomials:
A006530 (n),
A076565 (2n+1),
A076566 (3n+3),
A076567 (4n+6),
A164314 (n^2-2),
A076605 (n^2-1),
A014442 (n^2+1),
A069902 (n^2+n),
A074399 (n^2+n),
A199423 (2n^2+n),
A089619 (2n^2+2n+1),
A037464 (4n^2-1),
A253254 (9n^2-7n),
A093074 (n^3-n),
A081257 (n^3-1),
A081256 (n^3+1),
A321069(n^3+2),
A281793 (n^3+n^2+n+1),
A281793 (n^4-1),
A096172 (n^4+1),
A190136 (n^4 + 6n^3 + 11n^2 + 6n),
A140538 (2n^4+1),
A240548 (n^5+1),
A281794 (n^5+n^3+n^2+1),
A240549 (n^6+1),
A240550 (n^7+1),
A240551 (n^8+1),
A240552 (n^9+1),
A240553 (n^10+1).
A380609
Primes a single step away from a cycle under the mapping p-> gpf(2*p+1).
Original entry on oeis.org
2, 17, 31, 37, 67, 71, 73, 97, 103, 137, 149, 157, 181, 199, 211, 227, 241, 269, 283, 313, 337, 367, 379, 409, 487, 541, 563, 577, 587, 607, 617, 643, 661, 769, 787, 857, 877, 907, 929, 937, 977, 997, 1039, 1093, 1151, 1187, 1237, 1453, 1543, 1567, 1579, 1621
Offset: 1
Prime 2 is in the sequence as it maps to 5. And so is 17 as it maps to 7. The primes 3, 5, 7, 11, 13, 19, 23 and 47 are not included, as they are part of the cycle itself (and hence considered zero iterations away from the cycle).
-
gpf:= n -> max(numtheory:-factorset(n)):
filter:= proc(n) local S,t,x;
t:= gpf(2*n+1);
if t = n then return false fi;
S:= {n,t};
x:= t;
do
x:= gpf(2*x+1);
if member(x,S) then return (x = t) fi;
S:= S union {x};
od;
end proc:
select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Feb 03 2025
Showing 1-6 of 6 results.
Comments