cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A316859 Triangle read by rows constructed from A076565 as sum of greatest prime factors.

Original entry on oeis.org

6, 8, 8, 10, 10, 10, 6, 12, 12, 6, 14, 8, 14, 8, 14, 16, 16, 10, 10, 16, 16, 8, 18, 18, 6, 18, 18, 8, 20, 10, 20, 14, 14, 20, 10, 20, 22, 22, 12, 16, 22, 16, 12, 22, 22, 10, 24, 24, 8, 24, 24, 8, 24, 24, 10, 26, 12, 26, 20, 16, 26, 16, 20, 26, 12, 26, 8, 28, 14, 22, 28, 18, 18, 28, 22, 14, 28, 8
Offset: 1

Views

Author

Fred Daniel Kline, Jul 15 2018

Keywords

Comments

The greatest number in row k is 2*k + 4, thus consecutive rows identify consecutive even numbers (sums of primes).
To get the n-th row: copy (1...n) of A076565, reverse, and add together.
When primes meet primes we get the maximum values. When primes or prime factors meet prime factors, we get lesser values. (Spot checked. Still empirical.)

Examples

			{ 6},           <--- copy (1,1) of A076565, add together
{ 8,  8},       <--- copy (1,2) of A076565, reverse, and add together
{10, 10, 10},   <--- copy (1,3) of A076565, reverse, and add together
{ 6, 12, 12,  6},
{14,  8, 14,  8, 14},
{16, 16, 10, 10, 16, 16},
{ 8, 18, 18,  6, 18, 18,  8}, <=== differences with A316858 begin here
{20, 10, 20, 14, 14, 20, 10, 20},
{22, 22, 12, 16, 22, 16, 12, 22, 22},
{10, 24, 24,  8, 24, 24,  8, 24, 24, 10},
{26, 12, 26, 20, 16, 26, 16, 20, 26, 12, 26},
{ 8, 28, 14, 22, 28, 18, 18, 28, 22, 14, 28,  8}
		

Crossrefs

Cf. A076565, A316858 related triangle using lpfs.

Programs

  • Mathematica
    gpf[n_] := FactorInteger[2 n + 1][[-1, 1]]; A076565 = Array[gpf, 12];
    a = Table[A076565[[1 ;; -n]] + Reverse[A076565[[1 ;; -n]]],
      {n, Length[A076565], 1, -1}];

A076567 Greatest prime divisor of 4n+6 (sum of four successive integers).

Original entry on oeis.org

5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 5, 3, 29, 31, 11, 7, 37, 13, 41, 43, 5, 47, 7, 17, 53, 11, 19, 59, 61, 7, 13, 67, 23, 71, 73, 5, 11, 79, 3, 83, 17, 29, 89, 13, 31, 19, 97, 11, 101, 103, 7, 107, 109, 37, 113, 23, 13, 17, 11, 41, 5, 127, 43, 131, 19, 5, 137, 139, 47, 13
Offset: 1

Views

Author

Zak Seidov, Oct 19 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> max(numtheory:-factorset(n)):
    map(f, [seq(i,i=10..1000,4)]); # Robert Israel, Nov 10 2020
  • Mathematica
    FactorInteger[#][[-1,1]]&/@(4*Range[70]+6) (* Harvey P. Dale, Mar 12 2017 *)
  • PARI
    a(n) = {f = factor(4*n+6); return (f[length(f~), 1]);} \\ Michel Marcus, Apr 19 2013
    
  • PARI
    a(n) = vecmax(factor(4*n+6)[,1]); \\ Michel Marcus, Nov 10 2020

Formula

a(n) = A076565(n+1) = A006530(4n+6). - R. J. Mathar, Jul 31 2008

A140538 Greatest prime factor of 2*n^4 + 1.

Original entry on oeis.org

3, 11, 163, 19, 139, 2593, 1601, 2731, 1193, 113, 227, 619, 577, 8537, 73, 43691, 55681, 209953, 307, 9697, 388963, 52057, 1091, 337, 260417, 304651, 3011, 4937, 471521, 1620001, 691, 5419, 32491, 46889, 90947, 25643, 11057, 15619, 7499, 7793
Offset: 1

Views

Author

Donald S. McDonald, Jul 06 2008

Keywords

Examples

			a(2)= 11 because 2*2^4+1 = 33 = 3*11, greatest prime factor is 11.
		

Programs

  • Magma
    [#f eq 0 select 1 else f[ #f][1] where f is Factorization(2*n^4 + 1): n in [1..50]]; // Vincenzo Librandi, Feb 17 2015
  • Mathematica
    Table[Max[Transpose[FactorInteger[2 n^4 + 1]][[1]]], {n, 50}] (* Vincenzo Librandi, Feb 17 2015 *)
  • PARI
    a(n) = f = factor(2*n^4+1); f[#f~,1]; \\ Michel Marcus, Aug 28 2013
    

Formula

a(n) = A006530(2n^4+1) = A076565(n^4). - R. J. Mathar, Aug 04 2008

Extensions

Extended from a(16) on by R. J. Mathar, Aug 04 2008

A179485 Sums of two successive primes s such that s+-3 are primes.

Original entry on oeis.org

8, 100, 1120, 1220, 1300, 2240, 2380, 2414, 3536, 3634, 4906, 4940, 5566, 5740, 6706, 7240, 8864, 9224, 9394, 10136, 10850, 12040, 12476, 12586, 12920, 13180, 13334, 13754, 14630, 14720, 15134, 16270, 17710, 18430, 18800, 19916, 21014, 21320
Offset: 1

Views

Author

Keywords

Comments

Intersection of A001043 and A087695. - Robert Israel, Oct 25 2017

Examples

			3+5=8,8-3=5(prime),8+3=11(prime),..
		

Crossrefs

Programs

  • Maple
    q:= 2; p:= 3;
    count:= 0:
    while count < 100 do
      q:= p; p:= nextprime(p);
      s:= q+p;
      if isprime(s-3) and isprime(s+3) then
        count:= count+1; A[count]:= s;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Oct 25 2017
  • Mathematica
    q=3;Select[Table[Prime[n]+Prime[n+1],{n,7!}],PrimeQ[ #-q]&&PrimeQ[ #+q]&]
    Select[Total/@Partition[Prime[Range[1400]],2,1],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018

A380609 Primes a single step away from a cycle under the mapping p-> gpf(2*p+1).

Original entry on oeis.org

2, 17, 31, 37, 67, 71, 73, 97, 103, 137, 149, 157, 181, 199, 211, 227, 241, 269, 283, 313, 337, 367, 379, 409, 487, 541, 563, 577, 587, 607, 617, 643, 661, 769, 787, 857, 877, 907, 929, 937, 977, 997, 1039, 1093, 1151, 1187, 1237, 1453, 1543, 1567, 1579, 1621
Offset: 1

Views

Author

Keywords

Comments

The cycle that gets entered consists of the primes in A287865. It appears that the mapping p -> gpf(2*p+1) produces no other cycles.
Conjecture: under repeated mapping all primes ultimately enter the same cycle.

Examples

			Prime 2 is in the sequence as it maps to 5. And so is 17 as it maps to 7.  The primes 3, 5, 7, 11, 13, 19, 23 and 47 are not included, as they are part of the cycle itself (and hence considered zero iterations away from the cycle).
		

Crossrefs

Programs

  • Maple
    gpf:= n -> max(numtheory:-factorset(n)):
    filter:= proc(n) local S,t,x;
      t:= gpf(2*n+1);
      if t = n then return false fi;
      S:= {n,t};
      x:= t;
      do
        x:= gpf(2*x+1);
        if member(x,S) then return (x = t) fi;
        S:= S union {x};
      od;
    end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Feb 03 2025
Showing 1-6 of 6 results.