A084415 Erroneous version of A076600.
4, 12, 8, 24, 15, 12, 24, 60, 16, 84, 48, 20, 30, 144, 24, 180, 21, 28, 120, 264, 32, 60
Offset: 3
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Nest[Append[#, k = #[[-1]]; d = Divisors[k^2]; Min@Select[(Reverse@d - d)/2, IntegerQ@# && # > k &]] &, {5}, 40] (* Ivan Neretin, Dec 15 2016 *)
a(3) = 9 because sqrt(1/3 + 1/4) = sqrt(7/12) is irrational, sqrt(1/3 + 1/5) = sqrt(8/15) is irrational, sqrt(1/3 + 1/6) = sqrt(1/2) is irrational, sqrt(1/3 + 1/7) = sqrt(10/21) is irrational, sqrt(1/3 + 1/8) = sqrt(11/24) is irrational, but sqrt(1/3 + 1/9) = sqrt(4/9) = 2/3 is rational.
A379815:=proc(n) local k; if n=1 or n=4 or n=16 then return 0 else for k from n+1 do if type(sqrt(1/n+1/k),rational) then return k fi od fi; end proc; seq(A379815(n),n=1..58);
a(n) = if ((n==1) || (n==4) || (n==16), return(0)); my(k=n+1); while (!issquare(1/n + 1/k), k++); k; \\ Michel Marcus, Feb 08 2025
2 is in the sequence because 2^2 + 11^2 = 5^3; 7 is in the sequence because 7^2 + 524^2 = 65^3; 1 is not in the sequence because 1^2 + k^2 is not a cube for any k > 1; 3 is not in the sequence because 3^2 + k^2 is not a cube for any k > 3. 174 is in the sequence because 174^2 + 406^2 = 58^3. - _Sean A. Irvine_, May 02 2025
k(0)=8 because A077059(0)^2+k(0)^2=0^2+8^2=4^3; k(0)=1 if 1 is a full cube.
a(1)=4 because A077059(1)^2+A077060(1)^2=0^2+8^2=4^3.
a(0)=8 because 0^2 + 8^2 = 4^3; a(2)=11 because 2^2 + 11^2 = 5^3.
nxt[n_]:= Module[{k = n + 1}, While[!IntegerQ[Sqrt[n^2 + k^2]], k++]; k]; NestList[nxt,7,40] (* Harvey P. Dale, May 29 2015 *)
A076600:= proc(n) local q; q:= max(select(t -> n^2/t - t > 2*n and (t - n^2/t)::even, numtheory:-divisors(n^2))); if q = -infinity then 0 else (n^2/q - q)/2 fi; end proc: A[1]:= 11; for n from 2 to 100 do A[n]:= A076600(A[n-1]); od: seq(A[i],i=1..100); # Robert Israel, Mar 22 2018
nmax = 100; A076600[n_] := Module[{q}, q = Max[Select[Divisors[n^2], n^2/# - # > 2n && EvenQ[# - n^2/#]&]]; If[q == -Infinity, 0, (n^2/q - q)/2]]; a[1] = 11; For[n = 2, n <= nmax, n++, a[n] = A076600[a[n - 1]]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, May 17 2023, after Robert Israel *)
Clear[nxt]; nxt[n_]:=Module[{i=n+1},While[!IntegerQ[Sqrt[n^2+i^2]],i++]; i]; NestList[nxt,6,40] (* Harvey P. Dale, Dec 03 2010 *)
Comments