cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A139056 Numbers k for which (k!-3)/3 is prime.

Original entry on oeis.org

4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015

Crossrefs

Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
  • PARI
    for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015

A051915 Numbers k such that 2*k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 12, 18, 35, 51, 53, 78, 209, 396, 4166, 9091, 9587, 13357, 15917, 17652, 46127, 66480
Offset: 1

Views

Author

Labos Elemer, Dec 18 1999

Keywords

Comments

Used PrimeForm to prove primality for n = 4166 (classical N-1 test). - David Radcliffe, May 28 2007
a(22) > 80000. - Serge Batalov, Jun 09 2025

Examples

			k = 5 is here because 2*5! + 1 = 241 is prime.
		

Crossrefs

Programs

Extensions

4166 from David Radcliffe, May 28 2007
More terms from Serge Batalov, Feb 18 2015
a(21) from Serge Batalov, Jun 08 2025

A076680 Numbers k such that 4*k! + 1 is prime.

Original entry on oeis.org

0, 1, 4, 7, 8, 9, 13, 16, 28, 54, 86, 129, 190, 351, 466, 697, 938, 1510, 2748, 2878, 3396, 4057, 4384, 5534, 7069, 10364
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(25) > 6311. - Jinyuan Wang, Feb 06 2020

Examples

			k = 7 is a term because 4*7! + 1 = 20161 is prime.
		

Crossrefs

Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.

Programs

  • Mathematica
    Select[Range[5000],PrimeQ[4#!+1]&] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    is(k) = ispseudoprime(4*k!+1); \\ Jinyuan Wang, Feb 06 2020

Extensions

Corrected (added missed terms 2748, 2878) by Serge Batalov, Feb 24 2015
a(24) from Jinyuan Wang, Feb 06 2020
a(25)-a(26) from Michael S. Branicky, Jul 04 2024

A126896 Numbers k such that 10*k! + 1 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 23, 32, 39, 61, 349, 718, 805, 1025, 1194, 1550, 1774, 3417, 7583
Offset: 1

Views

Author

Parthasarathy Nambi, May 07 2007

Keywords

Comments

a(17) > 2880. - Jinyuan Wang, Feb 05 2020
a(19) > 12000. - Michael S. Branicky, Jul 07 2024

Examples

			k = 4 is a term because 10*4! + 1 = 241 is prime.
		

Crossrefs

Corresponding primes are in A089764.

Programs

  • PARI
    is(k) = ispseudoprime(10*k!+1); \\ Jinyuan Wang, Feb 05 2020

Extensions

a(15)-a(16) from Jinyuan Wang, Feb 05 2020
a(17) from Michael S. Branicky, Apr 16 2023
a(18) from Michael S. Branicky, Jul 07 2024

A076683 Numbers k such that 7*k! + 1 is prime.

Original entry on oeis.org

3, 7, 8, 15, 19, 29, 36, 43, 51, 158, 160, 203, 432, 909, 1235, 3209, 8715, 9707
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(17) > 5830. - Jinyuan Wang, Feb 05 2020
a(19) > 12000. - Michael S. Branicky, Jul 04 2024

Examples

			k = 3 is here because 7*3! + 1 = 43 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(7*k!+1); \\ Jinyuan Wang, Feb 05 2020
    
  • Python
    from sympy import isprime
    from math import factorial
    def aupto(m): return [k for k in range(m+1) if isprime(7*factorial(k)+1)]
    print(aupto(300)) # Michael S. Branicky, Mar 07 2021

Extensions

a(17)-a(18) from Michael S. Branicky, Jul 04 2024

A178488 Numbers k such that 8*k! + 1 is prime.

Original entry on oeis.org

2, 4, 9, 10, 11, 12, 15, 25, 31, 46, 53, 78, 318, 615, 955, 1646, 2669, 2672, 3515, 7689
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010 and M. F. Hasler, Sep 16 2010

Keywords

Comments

a(20) > 3810. - Jinyuan Wang, Feb 05 2020
a(21) > 12000. - Michael S. Branicky, Jul 03 2024

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[8 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    for(k=1, 999, ispseudoprime(8*k!+1) & print1(k, ", "))
    
  • PFGW
    ABC2 8*$a!+1
    a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020

Extensions

a(16)-a(19) from Jinyuan Wang, Feb 05 2020
a(20) from Michael S. Branicky, Jul 02 2024

A180626 Numbers k such that 9*k! + 1 is prime.

Original entry on oeis.org

2, 6, 7, 10, 13, 15, 24, 29, 33, 44, 98, 300, 548, 942, 1099, 1176, 1632, 1794, 3676, 3768, 4804, 6499, 8049, 8164, 8917, 10270, 11610, 11959
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

Tested to 4500. - Robert G. Wilson v, Sep 28 2010
a(22) > 5235. - Jinyuan Wang, Feb 05 2020

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[9 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    is(k) = ispseudoprime(9*k!+1); \\ Jinyuan Wang, Feb 05 2020

Extensions

a(17)-a(20) from Robert G. Wilson v, Sep 28 2010
a(21) from Jinyuan Wang, Feb 05 2020
a(22) from Michael S. Branicky, May 27 2023
a(23)-a(28) from Michael S. Branicky, Jul 12 2024

A076682 Numbers k such that 6*k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 12, 13, 18, 24, 38, 48, 60, 113, 196, 210, 391, 681, 739, 778, 1653, 1778, 1796, 1820, 2391, 2505, 4595, 8937
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(29) > 5800. - Jinyuan Wang, Feb 05 2020
a(30) > 12000. - Michael S. Branicky, Jul 04 2024

Examples

			k = 3 is here because 6*3! + 1 = 37 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(6*k!+1); \\ Jinyuan Wang, Feb 05 2020

Extensions

a(26) inserted by and a(29) from Michael S. Branicky, Jul 03 2024

A076681 Numbers k such that 5*k! + 1 is prime.

Original entry on oeis.org

2, 3, 5, 10, 11, 12, 17, 34, 74, 136, 155, 259, 271, 290, 352, 479, 494, 677, 776, 862, 921, 932, 2211, 3927, 4688, 12567
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(26) > 4700. - Jinyuan Wang, Feb 04 2020

Examples

			k = 3 is here because 5*3! + 1 = 31 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(5*k!+1); \\ Jinyuan Wang, Feb 04 2020

Extensions

a(25) from Jinyuan Wang, Feb 04 2020
a(26) from Michael S. Branicky, Jul 03 2024

A062551 Primes of the form 3*k! + 1.

Original entry on oeis.org

7, 19, 73, 2161, 15121, 1088641, 10886401, 18681062401, 77556050216654929920001, 46533630129992957952000001, 789392510801080590501654036480000001
Offset: 1

Views

Author

Jason Earls, Jul 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=3*n!+1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 28 2009 *)
    Select[3*Range[40]! +1,PrimeQ] (* Harvey P. Dale, Jul 20 2018 *)
  • PARI
    for(n=1,40, if(isprime(3*n!+1),print(3*n!+1)))
    
  • PARI
    { n=0; for (m=0, 10^5, if(isprime(a=3*m! + 1), write("b062551.txt", n++, " ", a); if (n==15, break)) ) } \\ Harry J. Smith, Aug 08 2009

Formula

a(n) = A173324(A076679(n)). - Elmo R. Oliveira, Apr 17 2025
Showing 1-10 of 10 results.