A116724 Erroneous version of A076680.
0, 1, 2, 4, 7, 8, 9, 13, 16, 28, 54, 129, 190
Offset: 1
Keywords
References
- From a posting to the Math Fun and Sequence Fans mailing lists, Sep 14 2010.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
k = 5 is here because 2*5! + 1 = 241 is prime.
[n: n in [0..1000] | IsPrime(2*Factorial(n) +1)]; // Vincenzo Librandi, Feb 21 2015
Select[Range[0, 400], PrimeQ[2*#! + 1] &] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
is(k) = ispseudoprime(2*k!+1); \\ Jinyuan Wang, Feb 05 2020
k = 5 is here because 4*5! - 1 = 479 is prime.
for n from 0 to 1000 do if isprime(4*n! - 1) then print(n) end if end do;
For[n = 0, True, n++, If[PrimeQ[4 n! - 1], Print[n]]] (* Jean-François Alcover, Sep 23 2015 *)
is_A099350(n)=ispseudoprime(n!*4-1) \\ M. F. Hasler, Sep 20 2015
k = 6 is here because 3*6! + 1 = 2161 is prime.
isok(n) = isprime(3*n! + 1); \\ Michel Marcus, Nov 13 2016
ABC2 3*$a!+1 a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020
k = 4 is a term because 10*4! + 1 = 241 is prime.
is(k) = ispseudoprime(10*k!+1); \\ Jinyuan Wang, Feb 05 2020
k = 3 is here because 7*3! + 1 = 43 is prime.
is(k) = ispseudoprime(7*k!+1); \\ Jinyuan Wang, Feb 05 2020
from sympy import isprime from math import factorial def aupto(m): return [k for k in range(m+1) if isprime(7*factorial(k)+1)] print(aupto(300)) # Michael S. Branicky, Mar 07 2021
fQ[n_] := PrimeQ[8 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
for(k=1, 999, ispseudoprime(8*k!+1) & print1(k, ", "))
ABC2 8*$a!+1 a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020
fQ[n_] := PrimeQ[9 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
is(k) = ispseudoprime(9*k!+1); \\ Jinyuan Wang, Feb 05 2020
k = 3 is here because 6*3! + 1 = 37 is prime.
is(k) = ispseudoprime(6*k!+1); \\ Jinyuan Wang, Feb 05 2020
k = 3 is here because 5*3! + 1 = 31 is prime.
is(k) = ispseudoprime(5*k!+1); \\ Jinyuan Wang, Feb 04 2020
Comments