cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077414 a(n) = n*(n - 1)*(n + 2)/2.

Original entry on oeis.org

0, 4, 15, 36, 70, 120, 189, 280, 396, 540, 715, 924, 1170, 1456, 1785, 2160, 2584, 3060, 3591, 4180, 4830, 5544, 6325, 7176, 8100, 9100, 10179, 11340, 12586, 13920, 15345, 16864, 18480, 20196, 22015, 23940, 25974, 28120, 30381, 32760, 35260
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Number of independent components of a certain 3-tensor in n-space.
a(n) is the number of independent components of a 3-tensor t(a,b,c) which satisfies t(a,b,c) = t(b,a,c) and Sum_{a=1..n} t(a,a,c) = 0 for all c, with a,b,c range 1..n. (3-tensor in n-dimensional space which is symmetric and traceless in one pair of its indices.)
Row 2 of the convolution array A213761. - Clark Kimberling, Jul 04 2012
Also, the number of ways to place two dominoes horizontally in the same row on an (n+2) X (n+2) chessboard. - Ralf Stephan, Jun 09 2014
Also, the sum of all the numbers in a completely filled n X n tic-tac-toe board with n-1 players using the numbers 0, 1, 2,... n-2. See "Sums of Square Tic Tac Toe Boards that end in a Draw" in links for proof. - Tanner Robeson, Aug 23 2020
a(n) is the number of degrees of freedom in a tetrahedral cell for a Raviart-Thomas finite element space of order n. - Matthew Scroggs, Jan 02 2021

Examples

			For n=6, a(6) = 1*(3*5+1)+2*(3*4+1)+3*(3*3+1)+4*(3*2+1)+5*(3*1+1) = 120. - _Bruno Berselli_, Feb 13 2014
G.f. = 4*x^2 + 15*x^3 + 36*x^4 + 70*x^5 + 120*x^6 + 189*x^7 + 280*x^8 + ...
		

Crossrefs

Cf. A000096, A005564, A057145, A115067 (first differences), A213761.
Cf. similar sequences of the type m*(m+1)*(m+k)/2 listed in A267370.

Programs

  • Magma
    [n*(n-1)*(n+2)/2: n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Maple
    A077414:=n->n*(n-1)*(n+2)/2: seq(A077414(n), n=1..60); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[(n (n - 1) (n + 2))/2, {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 15, 36}, 50] (* Harvey P. Dale, Jun 04 2012 *)
    CoefficientList[Series[x (4 - x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
  • PARI
    a(n)=n*(n-1)*(n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    concat(0, Vec(x^2*(4-x)/(1-x)^4 + O(x^200))) \\ Altug Alkan, Jan 15 2016
    

Formula

a(n) = n * ( binomial(n+1, 2)-1 ).
G.f.: x^2*(4-x)/(1-x)^4.
a(n) = n*Sum_{j=2..n} j. - Zerinvary Lajos, Sep 12 2006
a(1)=0, a(2)=4, a(3)=15, a(4)=36; for n>4, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 04 2012
a(n) = Sum_{i=1..n-1} i*(3*(n-i)+1). - Bruno Berselli, Feb 13 2014
a(-n) = -A005564(n). - Michael Somos, Jun 09 2014
a(n) = A057145(n,n+2). - R. J. Mathar, Jul 28 2016
a(n) = t(n,t(n,1)) + n, where t(n,k) = n*(n+1)/2 + k*n and t(n,1) = A000096(n). - Bruno Berselli, Feb 28 2017
a(n) = n^3/2 + n^2/2 - n. - Tanner Robeson, Aug 23 2020
Sum_{n>=2} 1/a(n) = 7/18. - Amiram Eldar, Oct 07 2020
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/3 - 13/18. - Amiram Eldar, Feb 22 2022
E.g.f.: exp(x)*x^2*(4 + x)/2. - Stefano Spezia, Jan 03 2023