A077415 a(n) = n*(n+2)*(n-2)/3.
0, 5, 16, 35, 64, 105, 160, 231, 320, 429, 560, 715, 896, 1105, 1344, 1615, 1920, 2261, 2640, 3059, 3520, 4025, 4576, 5175, 5824, 6525, 7280, 8091, 8960, 9889, 10880, 11935, 13056, 14245, 15504, 16835, 18240, 19721, 21280, 22919, 24640, 26445
Offset: 2
Links
- G. C. Greubel, Table of n, a(n) for n = 2..10000
- Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(n+2)*(n-2)/3: n in [2..50]]; /* or */ I:=[0,5,16,35]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
-
Maple
seq((n^3-4*n)/3, n=2..35); # Zerinvary Lajos, Jan 20 2007
-
Mathematica
Print[Table[Sum[(-1)^i*2^(n-2*i-1)*Binomial[n-i-1, i]*(n-2*i-2), {i, 0, Floor[(n-1)/2]}], {n, 2, 100}]] ; (* John M. Campbell, Jan 08 2016 *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 35}, 50] (* Vincenzo Librandi, Jan 09 2016 *) Table[n*(n + 2)*(n - 2)/3, {n, 2, 50}] (* G. C. Greubel, Jan 18 2018 *)
-
PARI
{a=0; print1(a,","); for(n=1, 42, print1(a=a+n+(n+1)^2, ","))} \\ Klaus Brockhaus, Oct 21 2008
-
PARI
concat(0, Vec(x^3*(5-4*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 08 2015
Formula
G.f.: x^3*(5 - 4*x + x^2)/(1-x)^4.
a(n) = A084990(n-1) - 1. - Reinhard Zumkeller, Aug 20 2007
a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * 2^(n-2*i-1) * binomial(n-i-1, i) * (n-2*i-2). - John M. Campbell, Jan 08 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=3} 1/a(n) = 11/32.
Sum_{n>=3} (-1)^(n+1)/a(n) = 5/32. (End)
E.g.f.: x*(1 + exp(x)*(x^2 + 3*x - 3)/3). - Stefano Spezia, Mar 06 2024
Comments