cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077415 a(n) = n*(n+2)*(n-2)/3.

Original entry on oeis.org

0, 5, 16, 35, 64, 105, 160, 231, 320, 429, 560, 715, 896, 1105, 1344, 1615, 1920, 2261, 2640, 3059, 3520, 4025, 4576, 5175, 5824, 6525, 7280, 8091, 8960, 9889, 10880, 11935, 13056, 14245, 15504, 16835, 18240, 19721, 21280, 22919, 24640, 26445
Offset: 2

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) is the number of independent components of a 3-tensor t(a,b,c) which satisfies t(a,b,c)=t(b,a,c) and sum(t(a,a,c),a=1..n)=0 for all c and t(a,b,c)+t(b,c,a)+t(c,a,b)=0, with a,b,c range 1..n. (3-tensor in n-dimensional space which is symmetric and traceless in one pair of its indices and satisfies the cyclic identity.)
Number of standard tableaux of shape (n-1,2,1) (n>=3). - Emeric Deutsch, May 13 2004
Zero followed by partial sums of A028387, starting at n=1. - Klaus Brockhaus, Oct 21 2008
For n>=4, a(n-1) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0101 (the first n-4 zeros), or, the same, a(n-1) is up-down coefficient {n,5} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014
For n>=3, a(n) equals the second immanant of the (n-1) X (n-1) tridiagonal matrix with 2's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jan 08 2016

Crossrefs

Cf. A000292, A028387 (first differences), A033275 (partial sums), A060351, A077414, A084990.

Programs

  • Magma
    [n*(n+2)*(n-2)/3: n in [2..50]]; /* or */ I:=[0,5,16,35]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    seq((n^3-4*n)/3, n=2..35); # Zerinvary Lajos, Jan 20 2007
  • Mathematica
    Print[Table[Sum[(-1)^i*2^(n-2*i-1)*Binomial[n-i-1, i]*(n-2*i-2), {i, 0, Floor[(n-1)/2]}], {n, 2, 100}]] ;  (* John M. Campbell, Jan 08 2016 *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 35}, 50] (* Vincenzo Librandi, Jan 09 2016 *)
    Table[n*(n + 2)*(n - 2)/3, {n, 2, 50}] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    {a=0; print1(a,","); for(n=1, 42, print1(a=a+n+(n+1)^2, ","))} \\ Klaus Brockhaus, Oct 21 2008
    
  • PARI
    concat(0, Vec(x^3*(5-4*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 08 2015
    

Formula

a(n) = n*(n+2)*(n-2)/3 = A077414(n) - binomial(n+2,3) = A077414(n) - A000292(n-1).
G.f.: x^3*(5 - 4*x + x^2)/(1-x)^4.
a(n) = A084990(n-1) - 1. - Reinhard Zumkeller, Aug 20 2007
a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * 2^(n-2*i-1) * binomial(n-i-1, i) * (n-2*i-2). - John M. Campbell, Jan 08 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=3} 1/a(n) = 11/32.
Sum_{n>=3} (-1)^(n+1)/a(n) = 5/32. (End)
E.g.f.: x*(1 + exp(x)*(x^2 + 3*x - 3)/3). - Stefano Spezia, Mar 06 2024