A002577
Number of partitions of 2^n into powers of 2.
Original entry on oeis.org
1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580362, 77477180493604, 34394869942983370, 27893897106768940836, 41603705003444309596874, 114788185359199234852802340, 588880400923055731115178072778, 5642645813427132737155703265972004
Offset: 0
To compute t_2(6,1) we can use a table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,6(=n), and j= 0,1,2,...,32(= k*m^{n-1}). It is: 1,2,3,4,5,6,7,8,9...,33; 1,4,9,16,25,36,49...,81; (so the second row contains the first members of A000290 -- the square numbers) 1,10,35,84,165,...,969; (so the third row contains the first members of A000447. The r-th tetrahedral number is given by formula r(r+1)(r+2)/6. This row (also A000447) contains the tetrahedral numbers, obtained for r=1,3,5,7,...) 1,36,201,656,1625; 1,202,1827; 1,1828; Column 1 contains the first 6 members of A002577. - _Valentin Bakoev_, Feb 25 2009
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 202*x^5 + 1828*x^6 + ...
- R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..85
- V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp.17-41.
- C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From _N. J. A. Sloane_, Dec 23 2012
- G. Blom and C.-E. Froeberg, Om myntvaexling, (On money-changing) [ Swedish ], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103.
- G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy]
- R. F. Churchhouse, Congruence properties of the binary partition function, Math. Proc. Cambr. Phil. Soc. vol 66, no. 2 (1969), 365-370.
- Carl-Erik Froberg, Accurate estimation of the number of binary partitions, BIT Numerical Mathematics vol. 17, no 4 (1977) 386-391.
- C.-E. Froberg, Accurate estimation of the number of binary partitions [Annotated scanned copy]
- H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edinburgh Sect. A 65 1959 177-192 (1959).
-
import Data.MemoCombinators (memo2, list, integral)
a002577 n = a002577_list !! n
a002577_list = f [1] where
f xs = (p' xs $ last xs) : f (1 : map (* 2) xs)
p' = memo2 (list integral) integral p
p 0 = 1; p [] = 0
p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
-- Reinhard Zumkeller, Nov 27 2015
-
A002577 := proc(n) if n<=1 then n+1 else A000123(2^(n-1)); fi; end;
-
$RecursionLimit = 10^5; (* b = A000123 *) b[0] = 1; b[n_?EvenQ] := b[n] = b[n-1] + b[n/2]; b[n_?OddQ] := b[n] = b[n-1] + b[(n-1)/2]; a[n_] := b[2^(n-1)]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 23 2011 *)
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^2^k, {k, 0, n}], {x, 0, 2^n}]; (* Michael Somos, Apr 21 2014 *)
-
a(n)=polcoeff(prod(j=0,n,1/(1-x^(2^j)+x*O(x^(2^n)))),2^n) \\ Paul D. Hanna
A145515
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 10, 1, 1, 1, 2, 6, 23, 36, 1, 1, 1, 2, 7, 46, 239, 202, 1, 1, 1, 2, 8, 82, 1086, 5828, 1828, 1, 1, 1, 2, 9, 134, 3707, 79326, 342383, 27338, 1, 1, 1, 2, 10, 205, 10340, 642457, 18583582, 50110484, 692004, 1, 1, 1, 2, 11, 298, 24901, 3649346, 446020582, 14481808030, 18757984046, 30251722, 1, 1
Offset: 0
A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, ...
1, 1, 4, 5, 6, 7, ...
1, 1, 10, 23, 46, 82, ...
1, 1, 36, 239, 1086, 3707, ...
1, 1, 202, 5828, 79326, 642457, ...
Columns k=0+1, 2-10 give:
A000012,
A002577,
A078125,
A078537,
A111822,
A111827,
A111832,
A111837,
A145512,
A145513.
-
b:= proc(n, j, k) local nn;
nn:= n+1;
if n<0 then 0
elif j=0 or n=0 or k<=1 then 1
elif j=1 then nn
elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1)
else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
fi
end:
A:= (n, k)-> b(1, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
A078536
Infinite lower triangular matrix, M, that satisfies [M^4](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 28, 16, 1, 1, 524, 496, 64, 1, 1, 29804, 41136, 8128, 256, 1, 1, 5423660, 10272816, 2755264, 130816, 1024, 1, 1, 3276048300, 8220685104, 2804672704, 178301696, 2096128, 4096, 1, 1, 6744720496300, 21934062166320, 9139625620672, 729250931456, 11442760704, 33550336, 16384, 1
Offset: 0
The 4th power of matrix is the same matrix excluding the first row and column:
[1,__0,__0,_0,0]^4=[____1,____0,___0,__0,0]
[1,__1,__0,_0,0]___[____4,____1,___0,__0,0]
[1,__4,__1,_0,0]___[___28,___16,___1,__0,0]
[1,_28,_16,_1,0]___[__524,__496,__64,__1,0]
[1,524,496,64,1]___[29804,41136,8128,256,1]
-
dim = 9;
a[, 0] = 1; a[i, i_] = 1; a[i_, j_] /; j > i = 0;
M = Table[a[i, j], {i, 0, dim-1}, {j, 0, dim-1}];
M4 = MatrixPower[M, 4];
sol = Table[M4[[i, j]] == M[[i+1, j+1]], {i, 1, dim-1}, {j, 1, dim-1}] // Flatten // Solve;
Table[a[i, j], {i, 0, dim-1}, {j, 0, i}] /. sol // Flatten (* Jean-François Alcover, Oct 20 2019 *)
A111822
Number of partitions of 5^n into powers of 5, also equals the row sums of triangle A111820, which shifts columns left and up under matrix 5th power.
Original entry on oeis.org
1, 2, 7, 82, 3707, 642457, 446020582, 1288155051832, 15905066118254957, 856874264098480364332, 204616369654716156089739332, 219286214391142987407272329973707, 1065403165201779499307991460987124895582, 23663347632778954225192551079067428619449114332
Offset: 0
-
a(n,q=5)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
A111827
Number of partitions of 6^n into powers of 6, also equals the row sums of triangle A111825, which shifts columns left and up under matrix 6th power.
Original entry on oeis.org
1, 2, 8, 134, 10340, 3649346, 6188114528, 52398157106366, 2277627698797283420, 518758596372421679994170, 628925760908337480420110203736, 4109478867142143642923124190955500214
Offset: 0
-
a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
A111832
Number of partitions of 7^n into powers of 7, also equals the row sums of triangle A111830, which shifts columns left and up under matrix 7th power.
Original entry on oeis.org
1, 2, 9, 205, 24901, 16077987, 58169810617, 1226373476385199, 154912862345527456431, 119679779055077323244243580, 574461679441277269788798742908435, 17346328772332966415272910459727649244337, 3328366331331467859745524303574824288197338547909
Offset: 0
-
a(n,q=7)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
A111837
Number of partitions of 8^n into powers of 8, also equals the row sums of triangle A111835, which shifts columns left and up under matrix 8th power.
Original entry on oeis.org
1, 2, 10, 298, 53674, 58573738, 409251498922, 19046062579215274, 6071277235712979102634, 13531779463193107731083553706, 214224474679766323250278564215516074, 24390479071277895100812271376578637910371242, 20173309182842708837666031701435147789403500172143530
Offset: 0
-
a(n,q=8)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
A111847
Row sums of triangle A111845, which shifts columns left and up under matrix 4th power.
Original entry on oeis.org
1, 2, 9, 97, 2689, 214017, 53130241, 43283609601, 119521939222529, 1144341237628100609, 38638551719263573098497, 4662529388979590206324834305, 2032489532637330252763496597356545
Offset: 0
-
{a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B); return(sum(k=0,n,A[n+1,k+1])))}
A111977
Row sums of triangle A111975, which shifts columns left and up under matrix square.
Original entry on oeis.org
1, 2, 4, 13, 57, 369, 3681, 59073, 1579393, 72188673, 5749089793, 809616264193, 204018868459521, 92907742733348865, 77097057406948106241, 117413997231333438701569, 330195264668839727287861249
Offset: 0
-
{a(n,q=2)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=if(i>2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B); return(sum(k=0,n,A[n+1,k+1])))}
A346565
Number of compositions (ordered partitions) of 4^n into powers of 4.
Original entry on oeis.org
1, 2, 96, 579739960, 773527571233557154337704151068262296
Offset: 0
-
Table[SeriesCoefficient[1/(1 - Sum[x^(4^k), {k, 0, n}]), {x, 0, 4^n}], {n, 0, 4}]
Showing 1-10 of 10 results.
Comments