A078698
Number of ways to lace a shoe that has n pairs of eyelets such that each eyelet has at least one direct connection to the opposite side.
Original entry on oeis.org
1, 2, 20, 396, 14976, 907200, 79315200, 9551001600, 1513528934400, 305106949324800, 76296489615360000, 23175289163980800000, 8404709419090575360000, 3587225703492542791680000, 1779970753996760560435200000, 1016036270188884847558656000000, 661106386935312429191528448000000
Offset: 1
a(3) = 20: label the eyelets 1,2,3 from front to back on the left side then 4,5,6 from back to front on the right side. The lacings are: 124356 154326 153426 142536 145236 135246 and the following and their mirror images: 125346 124536 125436 152346 153246 152436 154236.
Examples for n=2,3,4 can be found following the FORTRAN program at given link.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 494.
-
c Program provided at Pfoertner link
-
a[n_] := (n-1)!^2 Sum[Binomial[n-k, k]^2, {k, 0, n/2}];
Array[a, 17] (* Jean-François Alcover, Jul 20 2018 *)
A005922
a(1)=1; a(n) = n!*Fibonacci(n+2), n > 1.
Original entry on oeis.org
1, 6, 30, 192, 1560, 15120, 171360, 2217600, 32296320, 522547200, 9300614400, 180583603200, 3798482688000, 86044973414400, 2088355965696000, 54064489070592000, 1487129136869376000, 43312058119249920000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A078702
Number of ways to lace a shoe that has n pairs of eyelets such that each eyelet has at least one direct connection to the opposite side.
Original entry on oeis.org
1, 2, 13, 213, 7584, 454380, 39665160, 4775586480, 756765576000, 152553490810560, 38148245068953600, 11587644586640707200, 4202354709635579481600, 1793612851748170637184000, 889985376998423302704307200, 508018135094443467957310848000, 330553193467656241628008759296000
Offset: 1
a(3) = 13: label the eyelets 1,2,3 from front to back on the left side then 4,5,6 from back to front on the right side. The lacings are: 124356 154326 153426 142536 145236 135246 125346 124536 125436 152346 153246 152436 154236.
A139167
Triangle T(n,k) read by rows: the coefficient [x^k] of the polynomial (n-1)! *sum_{i=0..n} Fibonacci(i)*binomial(x,n-i), read by rows, 0<=k
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 18, 11, 0, 1, 120, 50, 23, -2, 1, 960, 494, 65, 45, -5, 1, 9360, 4344, 1354, -15, 85, -9, 1, 105840, 51876, 10444, 3409, -350, 154, -14, 1, 1370880, 653232, 172444, 13300, 8729, -1232, 266, -20, 1, 19958400, 9654480, 2194380, 483272, -13923, 22449, -3150, 438, -27, 1
Offset: 1
1;
1, 1;
4, 1, 1;
18, 11, 0, 1;
120, 50, 23, -2, 1;
960, 494, 65, 45, -5, 1;
9360, 4344, 1354, -15,85, -9, 1;
105840, 51876, 10444, 3409, -350, 154, -14, 1;
1370880, 653232, 172444, 13300, 8729, -1232, 266, -20, 1;
19958400, 9654480, 2194380, 483272, -13923, 22449, -3150, 438, -27, 1;
- Brendan Hassett, Introduction to algebraic Geometry,Cambridge University Press. New York,2007, page 229
-
B := proc(x,k)
mul( (x-i+1)/i,i=1..k) ;
end proc:
A139167 := proc(n,k)
local f,i ;
f := 0 ;
for i from 0 to n do
f := f+combinat[fibonacci](i)*B(x,n-i) ;
end do;
%*(n-1)! ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, May 08 2013
-
Clear[a, p, x] a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2]; p[x, 0] = a[0]; p[x_, n_] := p[x, n] = Sum[a[i]*Binomial[x, n - i], {i, 0, n}]; Table[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], {n, 0, 10}]; a = Table[CoefficientList[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], x]], {n, 0, 10}]
A322044
Triangle read by rows: numerators of coefficients (highest degree first) of polynomials interpolating Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 3, 14, 30, 1, 2, 23, 94, 192, 1, 0, 35, 180, 744, 1560, 1, -3, 55, 255, 1744, 7308, 15120, 1, -7, 91, 245, 3304, 19922, 82284, 171360, 1, -12, 154, 0, 5929, 40572, 255996, 1068240, 2217600, 1, -18, 258, -756, 11361, 64638, 602972, 3746376, 15533568, 32296320
Offset: 0
Triangle begins:
1;
1, 2;
1, 3, 6;
1, 3, 14, 30;
1, 2, 23, 94, 192;
1, 0, 35, 180, 744, 1560;
1, -3, 55, 255, 1744, 7308, 15120;
...
- Brian Hopkins and Aram Tangboonduangjit, Fibonacci-producing rational polynomials, Fib. Q., 56:4 (2018), 303-312.
Second column is negation of
A167544.
-
F:= proc(n) option remember; (<<0|1>, <1|1>>^n)[1, 2] end:
T:= n-> (p-> seq(coeff(p, x, n-j), j=0..n))(n!*expand(add(
F(i+n+2)*binomial(x, i)*binomial(n-x, n-i), i=0..n))):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 24 2019
-
F[n_] := F[n] = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
T[n_] := Function[p, Table[Coefficient[p, x, n - j], {j, 0, n}]][n! * FunctionExpand[Sum[F[i + n + 2] Binomial[x, i] Binomial[n - x, n - i], {i, 0, n}]]];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 29 2020, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments