A119709 Table where n-th row (of A078822(n) terms) contains the distinct nonnegative integers which, when written in binary, are substrings of n written in binary.
0, 1, 0, 1, 2, 1, 3, 0, 1, 2, 4, 0, 1, 2, 5, 0, 1, 2, 3, 6, 1, 3, 7, 0, 1, 2, 4, 8, 0, 1, 2, 4, 9, 0, 1, 2, 5, 10, 0, 1, 2, 3, 5, 11, 0, 1, 2, 3, 4, 6, 12, 0, 1, 2, 3, 5, 6, 13, 0, 1, 2, 3, 6, 7, 14, 1, 3, 7, 15, 0, 1, 2, 4, 8, 16, 0, 1, 2, 4, 8, 17, 0, 1, 2, 4, 9, 18, 0, 1, 2, 3, 4, 9, 19, 0, 1, 2, 4, 5, 10
Offset: 0
Examples
12 in binary is 1100. Within this binary representation there is 0 (occurring twice), 1 (occurring twice), 10 (= 2 in decimal), 11 (= 3 in decimal), 100 (= 4 in decimal), 110 (= 6 in decimal) and 1100 (= 12 in decimal). So row 12 = (0,1,2,3,4,6,12).
Links
- Reinhard Zumkeller, Rows n = 0..511 of table, flattened
Programs
-
Haskell
import Data.List (isInfixOf) a119709 n k = a119709_tabf !! n !! k a119709_row n = map (foldr (\d v -> v * 2 + toInteger d) 0) $ filter (`isInfixOf` (a030308_row n)) $ take (n + 1) a030308_tabf a119709_tabf = map a119709_row [0..] -- Reinhard Zumkeller, Aug 14 2013
Extensions
Extended by Ray Chandler, Mar 13 2010
Comments