cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A257993 Least gap in the partition having Heinz number n; index of the least prime not dividing n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The "least gap" of a partition is the least positive integer that is not a part of the partition. For example, the least gap of the partition [7,4,2,2,1] is 3.
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
Sum of least gaps of all partitions of m = A022567(m).
From Antti Karttunen, Aug 22 2016: (Start)
Index of the least prime not dividing n. (After a formula given by Heinz.)
Least k such that A002110(k) does not divide n.
One more than the number of trailing zeros in primorial base representation of n, A049345.
(End)
The least gap is also called the mex (minimal excludant) of the partition. - Gus Wiseman, Apr 20 2021

Examples

			a(18) = 3 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having least gap equal to 3.
		

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
  • Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

Crossrefs

Positions of 1's are A005408.
Positions of 2's are A047235.
The number of gaps is A079067.
The version for crank is A257989.
The triangle counting partitions by this statistic is A264401.
One more than A276084.
The version for greatest difference is A286469 or A286470.
A maximal instead of minimal version is A339662.
Positions of even terms are A342050.
Positions of odd terms are A342051.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339737 counts partitions by sum and greatest gap.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: for q while member(q, B(n)) = true do  end do: q end proc: seq(a(n), n = 1 .. 150);
    # second Maple program:
    a:= n-> `if`(n=1, 1, (s-> min({$1..(max(s)+1)} minus s))(
            {map(x-> numtheory[pi](x[1]), ifactors(n)[2])[]})):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 09 2016
    # faster:
    A257993 := proc(n) local p, c; c := 1; p := 2;
    while n mod p = 0 do p := nextprime(p); c := c + 1 od: c end:
    seq(A257993(n), n=1..100); # Peter Luschny, Jun 04 2017
  • Mathematica
    A053669[n_] := For[p = 2, True, p = NextPrime[p], If[CoprimeQ[p, n], Return[p]]]; a[n_] := PrimePi[A053669[n]]; Array[a, 100] (* Jean-François Alcover, Nov 28 2016 *)
    Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; k, {n, 100}] (* Michael De Vlieger, Jun 22 2017 *)
  • PARI
    a(n) = forprime(p=2,, if (n % p, return(primepi(p)))); \\ Michel Marcus, Jun 22 2017
  • Python
    from sympy import nextprime, primepi
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def a(n): return primepi(a053669(n)) # Indranil Ghosh, May 12 2017
    
  • Scheme
    (define (A257993 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (d (modulo n p))) (if (not (zero? d)) i (loop (/ (- n d) p) (+ 1 i))))))
    ;; Antti Karttunen, Aug 22 2016
    

Formula

a(n) = A000720(A053669(n)). - Alois P. Heinz, May 18 2015
From Antti Karttunen, Aug 22-30 2016: (Start)
a(n) = 1 + A276084(n).
a(n) = A055396(A276086(n)).
A276152(n) = A002110(a(n)).
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} 1/A002110(k) = 1.705230... (1 + A064648). - Amiram Eldar, Jul 23 2022
a(n) << log n/log log n. - Charles R Greathouse IV, Dec 03 2022

Extensions

A simpler description added to the name by Antti Karttunen, Aug 22 2016

A342050 Numbers k which have an odd number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 30, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 60, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 90, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 120, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 150, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 180, 182, 184, 188, 190, 194, 196, 200, 202, 206, 208, 212
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is odd.
All the terms are even since odd numbers have 0 trailing zeros, and 0 is not odd.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * Sum_{k=1..m}(-1)^k/A002110(k) = 1, 2, 11, 76, 837, 10880, 184961, ...
The asymptotic density of this sequence is Sum_{k>=1} (-1)^(k+1)/A002110(k) = 0.362306... (A132120).
Also Heinz numbers of partitions with even least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021
Numbers k such that A000720(A053669(k)) is even. Differences from the related A353531 seem to be terms that are multiples of 210, but not all of them, for example primorial 30030 (= 143*210) is in neither sequence. Consider also A038698. - Antti Karttunen, Apr 25 2022

Examples

			2 is a term since A049345(2) = 10 has 1 trailing zero.
4 is a term since A049345(2) = 20 has 1 trailing zero.
30 is a term since A049345(2) = 1000 has 3 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}             46: {1,9}             90: {1,2,2,3}
      4: {1,1}           50: {1,3,3}           92: {1,1,9}
      8: {1,1,1}         52: {1,1,6}           94: {1,15}
     10: {1,3}           56: {1,1,1,4}         98: {1,4,4}
     14: {1,4}           58: {1,10}           100: {1,1,3,3}
     16: {1,1,1,1}       60: {1,1,2,3}        104: {1,1,1,6}
     20: {1,1,3}         62: {1,11}           106: {1,16}
     22: {1,5}           64: {1,1,1,1,1,1}    110: {1,3,5}
     26: {1,6}           68: {1,1,7}          112: {1,1,1,1,4}
     28: {1,1,4}         70: {1,3,4}          116: {1,1,10}
     30: {1,2,3}         74: {1,12}           118: {1,17}
     32: {1,1,1,1,1}     76: {1,1,8}          120: {1,1,1,2,3}
     34: {1,7}           80: {1,1,1,1,3}      122: {1,18}
     38: {1,8}           82: {1,13}           124: {1,1,11}
     40: {1,1,1,3}       86: {1,14}           128: {1,1,1,1,1,1,1}
     44: {1,1,5}         88: {1,1,1,5}        130: {1,3,6}
(End)
		

Crossrefs

Complement of A342051.
A099800 is subsequence.
Analogous sequences: A001950 (Zeckendorf representation), A036554 (binary), A145204 (ternary), A217319 (base 4), A232745 (factorial base).
The version for reversed binary expansion is A079523.
Positions of even terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339662 gives greatest gap in prime indices.
Differs from A353531 for the first time at n=77, where a(77) = 212, as this sequence misses A353531(77) = 210.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], OddQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],EvenQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A353525(n) = { for(i=1,oo,if(n%prime(i),return((i+1)%2))); }
    isA342050(n) = A353525(n);
    k=0; n=0; while(k<77, n++; if(isA342050(n), k++; print1(n,", "))); \\ Antti Karttunen, Apr 25 2022

Extensions

More terms added (to differentiate from A353531) by Antti Karttunen, Apr 25 2022

A342051 Numbers k which have an even number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is even.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * (1 - Sum_{k=1..m}(-1)^k/A002110(k)) = 1, 4, 19, 134, 1473, 19150, 325549 ...
The asymptotic density of this sequence is Sum_{k>=0} (-1)^k/A002110(k) = 0.637693... = 1 - A132120.
Also Heinz numbers of partitions with odd least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021

Examples

			1 is a term since A049345(1) = 1 has 0 trailing zero.
6 is a term since A049345(6) = 100 has 2 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
     1: {}           25: {3,3}          51: {2,7}
     3: {2}          27: {2,2,2}        53: {16}
     5: {3}          29: {10}           54: {1,2,2,2}
     6: {1,2}        31: {11}           55: {3,5}
     7: {4}          33: {2,5}          57: {2,8}
     9: {2,2}        35: {3,4}          59: {17}
    11: {5}          36: {1,1,2,2}      61: {18}
    12: {1,1,2}      37: {12}           63: {2,2,4}
    13: {6}          39: {2,6}          65: {3,6}
    15: {2,3}        41: {13}           66: {1,2,5}
    17: {7}          42: {1,2,4}        67: {19}
    18: {1,2,2}      43: {14}           69: {2,9}
    19: {8}          45: {2,2,3}        71: {20}
    21: {2,4}        47: {15}           72: {1,1,1,2,2}
    23: {9}          48: {1,1,1,1,2}    73: {21}
    24: {1,1,1,2}    49: {4,4}          75: {2,3,3}
(End)
		

Crossrefs

Complement of A342050.
A099788 is subsequence.
Analogous sequences: A000201 (Zeckendorf representation), A003159 (binary), A007417 (ternary), A232744 (factorial base).
The version for reversed binary expansion is A121539.
Positions of odd terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A339662 gives greatest gap in prime indices.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],OddQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)

A365921 Triangle read by rows where T(n,k) is the number of integer partitions y of n such that k is the greatest member of {0..n} that is not the sum of any nonempty submultiset of y.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 0, 4, 0, 0, 1, 2, 0, 5, 0, 0, 1, 1, 4, 0, 8, 0, 0, 0, 1, 2, 4, 0, 10, 0, 0, 0, 2, 1, 2, 7, 0, 16, 0, 0, 0, 0, 2, 1, 3, 8, 0, 20, 0, 0, 0, 0, 2, 2, 2, 4, 12, 0, 31, 0, 0, 0, 0, 0, 2, 2, 2, 5, 14, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Examples

			The partition (6,2,1,1) has subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10 so is counted under T(10,5).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  0  1  2  0
   4  0  0  1  2  0
   5  0  0  1  1  4  0
   8  0  0  0  1  2  4  0
  10  0  0  0  2  1  2  7  0
  16  0  0  0  0  2  1  3  8  0
  20  0  0  0  0  2  2  2  4 12  0
  31  0  0  0  0  0  2  2  2  5 14  0
  39  0  0  0  0  0  4  2  2  3  6 21  0
  55  0  0  0  0  0  0  4  2  4  3  9 24  0
  71  0  0  0  0  0  0  5  4  2  4  5 10 34  0
Row n = 8 counts the following partitions:
  (4211)      .  .  .  (521)   (611)  (71)   (8)     .
  (41111)              (5111)         (431)  (62)
  (3311)                                     (53)
  (3221)                                     (44)
  (32111)                                    (422)
  (311111)                                   (332)
  (22211)                                    (2222)
  (221111)
  (2111111)
  (11111111)
		

Crossrefs

Row sums are A000041.
Diagonal k = n-1 is A002865.
Column k = 1 is A126796 (complete partitions), ranks A325781.
Central diagonal n = 2k is A126796 also.
For parts instead of sums we have A339737, rank stat A339662, min A257993.
This is the triangle for the rank statistic A365920.
Latter row sums are A365924 (incomplete partitions), ranks A365830.
Column sums are A366127.
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.
A366128 gives the least non-subset-sum of prime indices.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n],Max@@Prepend[nmz[#],0]==k&]],{n,0,10},{k,0,n}]

A079067 Number of primes less than greatest prime factor of n but not dividing n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 1, 4, 0, 5, 2, 1, 0, 6, 0, 7, 1, 2, 3, 8, 0, 2, 4, 1, 2, 9, 0, 10, 0, 3, 5, 2, 0, 11, 6, 4, 1, 12, 1, 13, 3, 1, 7, 14, 0, 3, 1, 5, 4, 15, 0, 3, 2, 6, 8, 16, 0, 17, 9, 2, 0, 4, 2, 18, 5, 7, 1, 19, 0, 20, 10, 1, 6, 3, 3, 21, 1, 1, 11, 22, 1, 5, 12, 8, 3, 23, 0, 4, 7, 9, 13, 6, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 20 2002

Keywords

Comments

For n >= 2, a(n) is the largest part minus the number of distinct parts of the partition having Heinz number n. The Heinz number of a partition [i_1, i_2, ..., i_r] is defined as Product_{j=1..r} (i_j-th prime) (concept used by Alois P. Heinz in A215366 as an encoding of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56; a(56) = 4 - #{1,4} = 2. - Emeric Deutsch, Jun 09 2015 [edited by Peter Munn, Apr 09 2024]

Crossrefs

See the formula section for the relationships with A000040, A001221, A002110, A006530, A049084, A061395, A083720.

Programs

  • Maple
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: max(B(n))-nops(convert(B(n), set)) end proc: 0, seq(a(n), n = 2 .. 96); # The subprogram B yields the partition having Heinz number n. # Emeric Deutsch, Jun 09 2015
    # second Maple program:
    with(numtheory):
    a:= n-> (s-> pi(max(0, s))-nops(s))(factorset(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    a[1] = 0; a[n_] := With[{fi = FactorInteger[n]}, PrimePi[fi][[-1, 1]] - Length[fi]]; Array[a, 100] (* Jean-François Alcover, Jan 08 2016 *)
  • PARI
    a(n) = if (n==1, 0, my(pf=factor(n)[,1]); primepi(vecmax(pf)) - #pf); \\ Michel Marcus, May 05 2017

Formula

a(n) = A049084(A006530(n)) - A001221(n) = A061395(n) - A001221(n).
a(n) = 0 iff n = m*prime(k)#, where prime(k)# is the k-th primorial (A002110(k)) and A006530(m) <= A000040(k).
a(A000040(k)) = k - 1.
a(n) = A001221(A083720(n)). - Peter Munn, Apr 09 2024

A339662 Greatest gap in the partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 2, 4, 0, 5, 3, 1, 0, 6, 0, 7, 2, 3, 4, 8, 0, 2, 5, 1, 3, 9, 0, 10, 0, 4, 6, 2, 0, 11, 7, 5, 2, 12, 3, 13, 4, 1, 8, 14, 0, 3, 2, 6, 5, 15, 0, 4, 3, 7, 9, 16, 0, 17, 10, 3, 0, 5, 4, 18, 6, 8, 2, 19, 0, 20, 11, 1, 7, 3, 5, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the index of the greatest prime, up to the greatest prime index of n, not dividing n. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Positions of first appearances are A000040.
Positions of 0's are A055932.
The version for positions of 1's in reversed binary expansion is A063250.
The prime itself (not just the index) is A079068.
The version for crank is A257989.
The minimal instead of maximal version is A257993.
The version for greatest difference is A286469 or A286470.
Positive integers by Heinz weight and image are counted by A339737.
Positions of 1's are A339886.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[maxgap[primeMS[n]],{n,100}]

Formula

a(n) = A000720(A079068(n)).

A365920 Greatest non-subset-sum of the prime indices of n, or 0 if there is none.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 3, 2, 4, 0, 5, 3, 4, 0, 6, 0, 7, 0, 5, 4, 8, 0, 5, 5, 5, 3, 9, 0, 10, 0, 6, 6, 6, 0, 11, 7, 7, 0, 12, 0, 13, 4, 6, 8, 14, 0, 7, 5, 8, 5, 15, 0, 7, 0, 9, 9, 16, 0, 17, 10, 7, 0, 8, 4, 18, 6, 10, 6, 19, 0, 20, 11, 7, 7, 8, 5, 21, 0, 7, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Comments

This is the greatest element of {0,...,A056239(n)} that is not equal to A056239(d) for any divisor d|n, d>1. This definition is analogous to the Frobenius number of a numerical semigroup (see link), but it looks only at submultisets of a finite multiset, not all multisets of elements of a set.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 156 are {1,1,2,6}, with subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, so a(156) = 5.
		

Crossrefs

For binary indices instead of sums we have A063250.
Positions of first appearances > 2 are A065091.
Zeros are A325781, nonzeros A325798.
For prime indices instead of sums we have A339662, minimum A257993.
For least instead of greatest non-subset-sum we have A366128.
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Max@@Prepend[nmz[prix[n]],0],{n,100}]

A366128 Least non-subset-sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 3, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 1, 2, 1, 0, 1, 2, 1, 3, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 4, 1, 3, 1, 2, 1, 0, 1, 2, 1, 3, 1, 4, 1, 0, 1, 2, 1, 0, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2023

Keywords

Comments

Least positive integer up to the sum of prime indices of n that is not the sum of prime indices of any divisor of n, or 0 if none exists.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 3906 are {1,2,2,4,11}, with least non-subset-sum 10, so a(3906) = 10.
		

Crossrefs

Positions of ones are A005408.
Positions of twos appear to be A091999.
Zeros are A325781, nonzeros A325798.
For greatest instead of least we have A365920 (Frobenius number).
The triangle for this rank statistic is A365921 (partitions with least non-subset-sum k).
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[If[nmz[prix[n]]=={},0,Min@@nmz[prix[n]]],{n,100}]

A377774 a(n) = largest prime p < gpf(n) that does not divide n, or p = nextprime(gpf(n)) for n in A055932, where gpf = A006530.

Original entry on oeis.org

2, 3, 2, 3, 3, 5, 5, 3, 2, 3, 7, 5, 11, 5, 2, 3, 13, 5, 17, 3, 5, 7, 19, 5, 3, 11, 2, 5, 23, 7, 29, 3, 7, 13, 3, 5, 31, 17, 11, 3, 37, 5, 41, 7, 2, 19, 43, 5, 5, 3, 13, 11, 47, 5, 7, 5, 17, 23, 53, 7, 59, 29, 5, 3, 11, 7, 61, 13, 19, 3, 67, 5, 71, 31, 2, 17, 5
Offset: 1

Views

Author

Michael De Vlieger, Nov 22 2024

Keywords

Examples

			Let rad = A007947 and let P = A002110.
a(1) = 2 since P(0) = 1.
a(2) = 3 since P(1) = 2.
a(3) = 2 since prevprime(gpf(3)) = 2.
a(4) = 3 since rad(4) = 2 = P(1).
a(6) = 5 since P(2) = 6.
a(9) = 2 since gpf(9) = 3.
a(10) = 3 since 10 = 2*5.
a(12) = 5 since rad(12) = 6 = P(2).
a(14) = 5 since 14 = 2*7.
a(15) = 2 since 15 = 3*5, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[If[
      Or[IntegerQ@ Log2[n],
        And[EvenQ[n], Union@ Differences@ PrimePi[#] == {1}] ],
      NextPrime[#[[-1]] ],
      q = NextPrime[#[[-1]], -1];
        While[Divisible[n, q], q = NextPrime[q, -1]]; q] &[
      FactorInteger[n][[All, 1]] ], {n, 120}]

Formula

a(n) = prime(i+1) for n in A002110.
a(p) = prevprime(p) for odd prime p.

A117369 a(n) = smallest prime which is > smallest prime dividing n and is coprime to n.

Original entry on oeis.org

2, 3, 5, 3, 7, 5, 11, 3, 5, 3, 13, 5, 17, 3, 7, 3, 19, 5, 23, 3, 5, 3, 29, 5, 7, 3, 5, 3, 31, 7, 37, 3, 5, 3, 11, 5, 41, 3, 5, 3, 43, 5, 47, 3, 7, 3, 53, 5, 11, 3, 5, 3, 59, 5, 7, 3, 5, 3, 61, 7, 67, 3, 5, 3, 7, 5, 71, 3, 5, 3, 73, 5, 79, 3, 7
Offset: 1

Views

Author

Leroy Quet, Mar 10 2006

Keywords

Examples

			a(6) = 5 because 5 is the smallest prime which is both greater than the smallest prime dividing 6, which is 2 and is coprime to 6.
		

Crossrefs

Programs

  • Mathematica
    a[1] := 2; a[n_] := Module[{}, k = PrimePi[FactorInteger[n][[1, 1]]]; k++; While[Not[GCD[Prime[k], n] == 1 ], k++ ]; Prime[k]]; Table[a[i], {i, 1, 80}] (* Stefan Steinerberger and Patrick Hanslmaier, Jun 03 2007 *)
    spdn[n_]:=Module[{s=FactorInteger[n][[1,1]],p},p=NextPrime[s];While[ !CoprimeQ[ p,n],p=NextPrime[p]];p]; Array[spdn,80] (* Harvey P. Dale, Feb 18 2018 *)

Extensions

More terms from Stefan Steinerberger and Patrick Hanslmaier, Jun 03 2007
Showing 1-10 of 10 results.