A080054 G.f.: Product_{n >= 0} (1+x^(2n+1))/(1-x^(2n+1)).
1, 2, 2, 4, 6, 8, 12, 16, 22, 30, 40, 52, 68, 88, 112, 144, 182, 228, 286, 356, 440, 544, 668, 816, 996, 1210, 1464, 1768, 2128, 2552, 3056, 3648, 4342, 5160, 6116, 7232, 8538, 10056, 11820, 13872, 16248, 18996, 22176, 25844, 30068, 34936, 40528
Offset: 0
Examples
G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 6*q^4 + 8*q^5 + 12*q^6 + 16*q^7 + 22*q^8 + 30*q^9 + ... From _Peter Bala_, Nov 03 2019: (Start) F(x) := Product_{n >= 0} (1 + x^(2*n+1))/(1 - x^(2*n+1)). Simple continued fraction expansions of F(1/(2*m)): m=2 [1; 1, 2, 1, 1, 1, 1, 2, 1, 2, 33, 1, 3, 7, 4, 33, 1, 8, 4, 2, 1,...] m=3 [1; 2, 2, 2, 1, 1, 2, 2, 2, 2, 110, 1, 2, 46, 3, 110, 1, 3, 12, 1, 7,...] m=4 [1; 3, 2, 3, 1, 1, 3, 2, 3, 2, 259, 1, 1, 1, 2, 15, 2, 1, 2, 259, 1,...] m=5 [1; 4, 2, 4, 1, 1, 4, 2, 4, 2, 504, 1, 1, 1, 1, 78, 1, 1, 2, 504, 1,...] m=6 [1; 5, 2, 5, 1, 1, 5, 2, 5, 2, 869, 1, 1, 2, 2, 23, 2, 2, 2, 869, 1,...] m=7 [1; 6, 2, 6, 1, 1, 6, 2, 6, 2, 1378, 1, 1, 2, 1, 110, 1, 2, 2, 1378, 1,...] m=8 [1; 7, 2, 7, 1, 1, 7, 2, 7, 2, 2055, 1, 1, 3, 2, 31, 2, 3, 2, 2055, 1,...] m=9 [1; 8, 2, 8, 1, 1, 8, 2, 8, 2, 2924, 1, 1, 3, 1, 142, 1, 3, 2, 2924, 1,...] The sequence of the 10th partial denominators [33,110,259,504,...], starting at m = 2, appears to be given by the polynomial 4*m^3 + m - 1. The sequence of the 15th partial denominators [15,78,23,110,31,142,...], starting at m = 4, appears to be quasi-polynomial in m, with constituent polynomials 4*m - 1 and 16*m - 2. (End)
References
- B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
- A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed., G. Bell and Sons, 1895, p. 245, Art. 333.
- J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. VI
- J. W. L. Glaisher, On Some Continued Fractions, Messenger of Mathematics, 7 (1878), pp. 67-68, see p. 68
- H. S. Hall and S. R. Knight, Higher Algebra, Macmillan, 1957, p. 517.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eddy Ardonne, Rinat Kedem, and Michael Stone, Filling the Bose sea: symmetric quantum Hall edge states and affine characters, arXiv:cond-mat/0409369 [cond-mat.mes-hall], 2004; Journal of Physics A: Mathematical and General 38.3 (2005): 617. - From _N. J. A. Sloane_, Apr 24 2014
- C. Bessenrodt, On pairs of partitions with steadily decreasing parts, J. Combin. Theory, A 99 (2002), 162-174. MR1911463 (2003c:11133).
- A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London, 164 (1874), pp. 397-456, see pages 424 and 430.
- Shi-Chao Chen, On the number of overpartitions into odd parts, Discrete Math. 325 (2014), 32--37. MR3181230. But beware of typos in the g.f. on page 32. - _N. J. A. Sloane_, Apr 24 2014
- B. Hemanthkumar and S. Chandankumar, New congruences modulo small powers of 2 for overpartitions into odd parts, Matematički Vesnik (2020).
- M. D. Hirschhorn and J. A. Sellers, Arithmetic Properties of Overpartitions into Odd Parts, Annals of Combinatorics 10, no. 3 (2006), 353-367.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 11.
- Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69. See q-bar(n) on p. 66.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See q-bar(n).
- Vladimir Reshetnikov, A conjecture about algebraic values of (-q;-q)_oo/(q;q)_oo, Math Overflow Posting, Nov 23 2016, with proof supplied by Noam D. Elkies.
- Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Elliptic Lambda Function
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2) +add(2*b(n-i*j, i-2), j=1..n/i))) end: a:= n-> b(n, n-1+irem(n, 2)): seq(a(n), n=0..50); # Alois P. Heinz, Feb 10 2014 # alternative program using expansion of f(x, x^3) / f(-x, -x^3): with(gfun): series( add(x^(n*(2*n-1)), n = -8..8)/add((-1)^n*x^(n*(2*n-1)), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
-
Mathematica
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m )^(-1/8), {q, 0, n}]]; (* Michael Somos, Aug 03 2011 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q])^(1/2), {q, 0, n}]; (* Michael Somos, Aug 03 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, May 10 2014 *) a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, q^2, q], {q, 0, n}]; (* Michael Somos, May 10 2014 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[2*b[n - i*j, i - 2], {j, 1, n/i}]]]; a[n_] := b[n, n - 1 + Mod[n, 2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
-
PARI
{a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + 2*x + O(x^2); while( m
-
PARI
a(n)=polcoeff(exp(2*sum(k=0,n\2,sigma(2*k+1)/(2*k+1)*x^(2*k+1))),n) /* Paul D. Hanna */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Jul 07 2005 */
Formula
Expansion of f(q) / f(-q) in powers of q where f() is a Ramanujan theta function.
Expansion of (1 - k^2)^(-1/8) = k'^(-1/4) in powers of the nome q = exp(-Pi K'/K).
Expansion of eta(q^2)^3 / (eta(q^4) * eta(q)^2) in powers of q.
Euler transform of period 4 sequence [ 2, -1, 2, 0, ...].
(theta_3(q) / theta_4(q))^(1/2) = (phi(q) / phi(-q))^(1/2) = chi(q) / chi(-q) = psi(q) / psi(-q) = f(q) / f(-q) where phi{}, chi(), psi(), f() are Ramanujan theta functions.
G.f.: A(x) = exp( 2*sum_{n>=0} sigma(2*n+1)/(2*n+1)*x^(2*n+1) ). - Paul D. Hanna, Mar 01 2004
G.f. satisfies: A(-x) = 1/A(x), (A(x)+A(-x))/2 = A(x^2)*A(x^4)^2, A(x) = sqrt((A(x^2)^4+1)/2) + sqrt((A(x^2)^4-1)/2). - Paul D. Hanna, Mar 27 2004
Another g.f.: 1/product_{ k>= 1 } (1+x^(2*k))*(1-x^(2*k-1))^2. - Vladeta Jovovic, Mar 29 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v^3) * (v + 2*u^3) - u * (u^3 - v). - Michael Somos, Aug 03 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = (u^2 - v^2)^6 - 16 * u^2 * v^2 * (1 - u^8) * (1 - v^8). - Michael Somos, May 12 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A029838. - Michael Somos, Aug 03 2011
G.f.: (theta_3/theta_4)^(1/2) = ((Sum_{k in Z} x^(k^2))/(Sum_{k in Z} (-x)^(k^2)))^(1/2) = Product_{k>0} (1 - x^(4k-2))/((1 - x^(4k-1))(1 - x^(4k-3)))^2.
G.f.: Product_{ k >= 1 } (1 + x^(2*k-1))*(1 + x^k) = product_{ k >= 1 } (1 + x^(2*k-1))/(1 - x^(2*k-1)).
G.f.: 1 + 2*x / (1 - x) + 2*x^3 * (1 + x) / ((1 - x)*(1 - x^2)) + 2*x^6 * (1 + x)*(1 + x^2) / ((1 - x)*(1 - x^2)*(1 - x^3)) + ... [Glaisher 1876] - Michael Somos, Jun 20 2012
G.f.: 1 / (1 - 2*x / (1 + x - (x^2 - x^4) / (1 + x^3 - (x^3 - x^7) / (1 + x^5 - (x^4 - x^10) / (1 + x^7 - ...))))) [Glaisher 1878] - Michael Somos, Jun 24 2012
a(n) = (-1)^floor(n/2) * A080015(n) = (-1)^n * A108494(n). Convolution inverse is A108494. Convolution square is A007096.
Empirical : Sum_{n>=0} exp(-Pi)^n * a(n) = 2^(1/8). - Simon Plouffe, Feb 20 2011
Empirical : Sum_{n>=0} (-exp(-Pi))^n * a(n) = 1/2^(1/8). - Simon Plouffe, Feb 20 2011
a(n) ~ Pi * BesselI(1, Pi*sqrt(n/2)) / (4*sqrt(n)) ~ exp(Pi*sqrt(n/2)) / (2^(9/4) * n^(3/4)) * (1 - 3/(4*Pi*(sqrt(2*n))) - 15/(64*Pi^2*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
Simon Plouffe's empirical observations are true. Furthermore, for every positive rational p, Sum_{n>=0} exp(-Pi*sqrt(p))^n * a(n) = 1/(Sum_{n>=0} (-exp(-Pi*sqrt(p)))^n * a(n)) is an algebraic number (see the MathOverflow link). - Vladimir Reshetnikov, Nov 23 2016
G.f.: f(x,x^3)/f(-x,-x^3) = ( Sum_{n = -oo..oo} x^(n*(2*n-1)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(2*n-1)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. - Peter Bala, Feb 05 2021
G.f. A(q) = (-lambda(-q)/lambda(q))^(1/8), where lambda(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... is the elliptic modular function in powers of the nome q = exp(i*Pi*t), the g.f. of A115977; lambda(q) = k(q)^2, where k(q) = (theta_2(q) / theta_3(q))^2 is the elliptic modulus. - Peter Bala, Sep 26 2023
Recurrence: a(n) = c(n) + Sum_{k = 1..floor((-1 + sqrt(1 + 8*n))/2)} (-1)^(1 + k*(k+1)/2) * a(n - k*(k+1)/2), where c(n) = 1 if n is a triangular number, otherwise c(n) = 0. See A010054. - Peter Bala, Jun 08 2025
Extensions
Definition simplified by N. J. A. Sloane, Apr 24 2014
Comments