cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080085 Number of factors of 2 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 15, 16, 19, 25, 26, 34, 38, 39, 42, 49, 54, 56, 64, 67, 70, 74, 79, 85, 94, 97, 98, 102, 104, 109, 120, 128, 134, 135, 145, 146, 152, 159, 162, 168, 174, 176, 184, 190, 193, 194, 206, 216, 222, 224, 228, 232, 236, 244, 255, 259, 265, 266, 273, 277
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

n-th prime minus number of 1's in binary representation of n-th prime. [Juri-Stepan Gerasimov, May 17 2010]

Crossrefs

Cf. A276133 (first differences).
Column 1 of array A379008, incremented by one.

Programs

Formula

a(n) = Sum_{k=1..L} floor( p_n /2^k ), where L = log(p_n)/log(2), where p_n is the n-th prime.
a(n) = A000040(n) - A014499(n). - Juri-Stepan Gerasimov, May 17 2010
a(n) = 1+A294898(A000040(n)). - Antti Karttunen, Dec 14 2024

A080087 Number of factors of 5 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 9, 10, 12, 13, 14, 15, 16, 16, 18, 19, 20, 22, 24, 24, 25, 25, 26, 31, 32, 33, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 46, 47, 47, 51, 53, 55, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 69, 71, 75, 76, 76, 77, 81, 82, 84, 84, 86, 87, 89, 90
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

Highest power of 5 dividing prime(n)! = A039716(n), or also the number of trailing end 0's in A039716(n). - Lekraj Beedassy, Oct 31 2010

Crossrefs

Programs

  • Maple
    R:= NULL: v:= 0: p:= 0:
    for i from 1 to 100 do
       q:= p;
       p:= nextprime(p);
       v:= v + add(1+padic:-ordp(x,5), x = 1+floor(q/5) .. floor(p/5));
       R:= R,v;
    od:
    R; # Robert Israel, Sep 27 2023
  • Mathematica
    lst={};Do[p=Prime[n];s=0;While[p>1,p=IntegerPart[p/5];s+=p;];AppendTo[lst,s],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n) = valuation(prime(n)!, 5); \\ Michel Marcus, Jan 15 2015

Formula

a(n) = Sum_{k=1..L} floor(prime(n)/5^k), where L = log(p_n)/log(5).
a(n) = A112765(A039716(n)). - Michel Marcus, Sep 28 2023

A080084 Number of prime factors in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

1, 2, 5, 8, 16, 20, 29, 33, 41, 56, 60, 76, 85, 89, 98, 114, 129, 134, 151, 160, 166, 180, 192, 207, 229, 240, 244, 254, 260, 271, 308, 321, 338, 342, 369, 374, 391, 409, 418, 435, 451, 457, 484, 492, 502, 507, 541, 572, 585, 590, 601, 616, 623, 653, 674, 689
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 0,
          b(n-1)+numtheory[bigomega](n))
        end:
    a:= n-> b(ithprime(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 05 2019
  • Mathematica
    PrimeOmega[#!]&/@Prime[Range[60]] (* Harvey P. Dale, Nov 09 2011 *)

Formula

a(n) = Sum_{m=1..n} Sum_{k=1..L} floor( p_n /(p_m)^k ), where L = ceiling( log(p_n)/log(p_m) ).

A163464 Cumulative sum of a repeated shift-and-add operation on the base-7 representation of prime(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 16, 16, 17, 17, 18, 20, 20, 21, 21, 24, 24, 25, 26, 26, 27, 28, 28, 30, 30, 32, 32, 34, 35, 36, 36, 37, 38, 38, 40, 41, 42, 43, 43, 44, 45, 45, 46, 49, 50, 50, 51, 53, 54, 57, 57, 58, 59, 60, 61, 62
Offset: 1

Views

Author

Keywords

Comments

Starting from the base-7 representation of prime(n) = d_m*7^m + ... + d_3*7^3 + d_2*7^2 + d_1*7 + d_0, the least-significant digit is recursively removed (a shift-right operation in base 7), and the intermediate numbers are all added up:
a(n) = (d_m*7^(m-1) + ... + d_3*7^2 + d_2*7 + d_1)
+ (d_m*7^(m-2) + ... + d_4*7^2 + d_3*7 + d_2)
+ (d_m*7^(m-3) + ... + d_4*7 + d_3)
+ ... + d_m
= Sum_{j=1..m} d_j*(7^j - 1)/6.

Crossrefs

Programs

  • Maple
    shiftadd := proc(n,b) dgs := convert(n,base,b) ; add( op(i,dgs)*(b^(i-1)-1),i=2..nops(dgs))/(b-1) ; end:
    A163464 := proc(n) shiftadd(ithprime(n),7) ; end:
    seq(A163464(n),n=1..40) ; # R. J. Mathar, Aug 02 2009
  • Mathematica
    lst={}; Do[p=Prime[n]; s=0; While[p>1,p=IntegerPart[p/7];s+=p;]; AppendTo[lst, s],{n,6!}]; lst

Extensions

Definition rewritten by R. J. Mathar, Aug 02 2009
Showing 1-4 of 4 results.