A080635 Number of permutations on n letters without double falls and without initial falls.
1, 1, 1, 3, 9, 39, 189, 1107, 7281, 54351, 448821, 4085883, 40533129, 435847959, 5045745069, 62594829027, 828229153761, 11644113200031, 173331882039141, 2723549731505163, 45047085512477049, 782326996336904679, 14233537708408467549, 270733989894887810547
Offset: 0
Examples
E.g.f. = 1 + x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (13/40)*x^5 + (21/80)*x^6 + ... G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 39*x^5 + 189*x^6 + 1107*x^7 + ... For n = 3: 123, 132, 231. For n = 4: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412. a(4)=9. The 9 plane (ordered) increasing unary-binary trees are ................................................................... ..4................................................................ ..|................................................................ ..3..........4...4...............4...4...............3...3......... ..|........./.....\............./.....\............./.....\........ ..2....2...3.......3...2...3...2.......2...3...4...2.......2...4... ..|.....\./.........\./.....\./.........\./.....\./.........\./.... ..1......1...........1.......1...........1.......1...........1..... ................................................................... ..3...4...4...3.................................................... ...\./.....\./..................................................... ....2.......2...................................................... ....|.......|...................................................... ....1.......1...................................................... ...................................................................
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..464
- M. Aigner, Catalan and other numbers: a recurrent theme, Algebraic combinatorics and computer science, 347-390, Springer Italia, Milan, 2001.
- Cyril Banderier et al., Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016. See series expansion p. 35.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, preprint.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Miklós Bóna and István Mező, Limiting probabilities for vertices of a given rank in rooted trees, arXiv:1803.05033 [math.CO], 2018.
- Miklós Bóna and István Mező, Limiting Probabilities for Vertices of a Given Rank in 1-2 Trees, The Electronic Journal of Combinatorics (2019) Vol. 26, No. 3, P#3.41.
- Daniel Chen, Expected Number of Dice Rolls Until an Increasing Run of Three, arXiv:2308.14635 [math.CO], 2023. See p. 17.
- G. Datolli, P. L. Ottaviani, A. Torre and L. Vazquez, Evolution operator equations: integration with algebraic and finite differences methods.[...], La Rivista del Nuovo Cimento 20,2 (1997) 1-133. eq. (I.2.18).
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- R. Ehrenborg, Cyclically consecutive permutation avoidance, arXiv:1312.2051 [math.CO], 2013.
- S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.
- M. E. Jones and J. B. Remmel, Pattern matching in the cycle structures of permutations, Pure Math. Appl. (PU.M.A.), 22 (2011) 173-208.
- Kaarel Hänni, Asymptotics of descent functions, MIT Mathematics UROP+ Papers (2020).
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021, p. 6.
- Christopher Zhu, Enumerating Permutations and Rim Hooks Characterized by Double Descent Sets, arXiv:1910.12818 [math.CO], 2019.
Crossrefs
Programs
-
Maple
a:= proc(n) if n < 2 then 1 else n! * sum((sqrt(3)/(2*Pi*(k+1/3)))^(n+1), k=-infinity..infinity) fi end: seq(a(n), n=0..30); # Richard Ehrenborg, Dec 09 2013 a := proc(n) option remember; local k; if n < 3 then 1 else add(binomial(n-1, k)*a(k)*a(n-k-1), k = 0..n-2) fi end: seq(a(n), n = 0..23); # Peter Luschny, May 24 2024
-
Mathematica
Table[n!, {n, 0, 40}]*CoefficientList[Series[ (1 + 1/Sqrt[3] Tan[Sqrt[3]/2 x])/(1 - 1/Sqrt[3] Tan[Sqrt[3]/2 x]), {x, 0, 40}], x] a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1/2 + Sqrt[3]/2 Tan[ Pi/6 + Sqrt[3] x/2], {x, 0, n}]]; (* Michael Somos, May 22 2011 *) Join[{1}, FullSimplify[Table[3^((n+1)/2) * n! * (Zeta[n+1, 1/3] - (-1)^n*Zeta[n+1, 2/3]) / (2*Pi)^(n+1), {n, 1, 20}]]] (* Vaclav Kotesovec, Aug 06 2021 *)
-
Maxima
a(n):=if n=0 then 1 else sum((-3)^((n-k)/2)*((-1)^(n-k)+1)*sum(binomial(j+k-1,j)*(j+k)!*2^(-j-k)*(-1)^(j)*stirling2(n,j+k),j,0,n-k),k,1,n); /* Vladimir Kruchinin, Feb 13 2019 */
-
PARI
{a(n) = my(A); if( n<1, n==0, A = O(x); for( k=1, n, A = intformal( 1 + A + A^2)); n! * polcoeff( A, n))}; /* Michael Somos, Oct 04 2003 */
-
PARI
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(2*cosh(x +x*O(x^n)) - 1) ) )), n)} for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 22 2016
-
Sage
@CachedFunction def c(n,k) : if n==k: return 1 if k<1 or k>n: return 0 return ((n-k)//2+1)*c(n-1,k-1)+2*k*c(n-1,k+1) def A080635(n): return add(c(n,k) for k in (0..n)) [A080635(n) for n in (0..23)] # Peter Luschny, Jun 10 2014
Formula
E.g.f.: (1 + 1/sqrt(3) * tan(sqrt(3)/2 * x)) / (1 - 1/sqrt(3) * tan( sqrt(3)/2 * x)).
Recurrence: a(n+1) = (Sum_{k=0..n} binomial(n, k) * a(k) * a(n-k)) - a(n) + 0^n.
E.g.f.: A(x) satisfies A' = 1 - A + A^2. - Michael Somos, Oct 04 2003
E.g.f.: E(x) = (3*cos((1/2)*3^(1/2)*x) + (3^(1/2))*sin((1/2)*3^(1/2)*x))/(3*cos((1/2)*3^(1/2)*x) - (3^(1/2))* sin((1/2)*3^(1/2)*x)). See the Michael Somos comment. - Wolfdieter Lang, Sep 12 2005
O.g.f.: A(x) = 1+x/(1-x-2*x^2/(1-2*x-2*3*x^2/(1-3*x-3*4*x^2/(1-... -n*x-n*(n+1)*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Peter Bala: (Start)
An alternative form of the e.g.f. for this sequence taken from [Bergeron et al.] is
(1)... (sqrt(3)/2)*tan((sqrt(3)/2)*x+Pi/6) [with constant term 1/2].
By comparing the egf for this sequence with the egf for the Eulerian numbers A008292 we can show that
(2)... a(n) = A(n,w)/(1+w)^(n-1) for n >= 1,
where w = exp(2*Pi*i/3) and {A(n,x),n>=1} = [1, 1+x, 1+4*x+x^2, 1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials. Equivalently,
(3)... a(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} k!*Stirling2(n,k)*(-1/2 + sqrt(3)*i/6)^(k-1) for n >= 1, and
(4)... a(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} (-1/2 + sqrt(3)*i/6)^(k-1)* Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*j^n for n >= 1.
This explicit formula for a(n) may be used to obtain various congruence results. For example,
(5a)... a(p) == 1 (mod p) for prime p = 6*n+1,
(5b)... a(p) == -1 (mod p) for prime p = 6*n+5.
For the corresponding results for the case of non-plane unary-binary trees see A000111. For type B results see A001586. For a related sequence of polynomials see A185415. See also A185416 for a recursive method to compute this sequence. For forests of plane increasing unary binary trees see A185422 and A185423. (End)
O.g.f.: A(x) = x - (1/2)*x^2 + (1/2)*x^3 - (3/8)*x^4 + (13/40)*x^5 - (21/80)*x^6 + (123/560)*x^7 - (809/4480)*x^8 + (671/4480)*x^9 - (5541/44800)*x^10 + .... - Vladimir Kruchinin, Jan 18 2011
Let f(x) = 1+x+x^2. Then a(n+1) = (f(x)*d/dx)^n f(x) evaluated at x = 0. - Peter Bala, Oct 06 2011
From Sergei N. Gladkovskii, May 06 2013 - Dec 24 2013: (Start)
Continued fractions:
G.f.: 1 + 1/Q(0), where Q(k) = 1/(x*(k+1)) - 1 - 1/Q(k+1).
E.g.f.: 1 + 2*x/(W(0)-x), where W(k) = 4*k + 2 - 3*x^2/W(k+1).
G.f.: 1 + x/Q(0), m=1, where Q(k) = 1 - m*x*(2*k+1) - m*x^2*(2*k+1)*(2*k+2)/( 1 - m*x*(2*k+2) - m*x^2*(2*k+2)*(2*k+3)/Q(k+1) ).
G.f.: 1 + x/Q(0), where Q(k) = 1 - x*(k+1) - x^2*(k+1)*(k+2)/Q(k+1).
G.f.: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/( x^2*(k+1)*(k+2) - (1-x*(k+1))*(1-x*(k+2))/T(k+1) ).
G.f.: 1 + x/(G(0)-x), where G(k) = 1 + x*(k+1) - x*(k+1)/(1 - x*(k+2)/G(k+1) ). (End)
a(n) ~ 3^(3*(n+1)/2) * n^(n+1/2) / (exp(n)*(2*Pi)^(n+1/2)). - Vaclav Kotesovec, Oct 05 2013
a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^(n+1) for n >= 1. - Richard Ehrenborg, Dec 09 2013
From Peter Bala, Sep 11 2015: (Start)
The e.g.f. A(x) = (sqrt(3)/2)*tan((sqrt(3)/2)*x + Pi/6) satisfies the differential equation A"(x) = 2*A(x)*A'(x) with A(0) = 1/2 and A'(0) = 1, leading to the recurrence a(0) = 1/2, a(1) = 1, else a(n) = 2*Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the sequence [1/2, 1, 1, 3, 9, 39, 189, 1107, ...].
Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence n! and with a(0) = 0 and a(1) = 1 produces A000182. Cf. A002105, A234797. (End)
E.g.f.: exp( Series_Reversion( Integral 1/(2*cosh(x) - 1) dx ) ). - Paul D. Hanna, Feb 22 2016
a(n) = Sum_{k=1..n} (-3)^((n-k)/2)*((-1)^(n-k)+1)*Sum_{j=0..n-k} C(j+k-1,j)*(j+k)!*2^(-j-k)*(-1)^j*Stirling2(n,j+k),n>0, a(0)=1. - Vladimir Kruchinin, Feb 13 2019
For n > 0, a(n) = 3^((n+1)/2) * n! * (zeta(n+1, 1/3) - (-1)^n*zeta(n+1, 2/3)) / (2*Pi)^(n+1). - Vaclav Kotesovec, Aug 06 2021
Extensions
Several typos corrected by Olivier Gérard, Mar 26 2011
Comments