A081266 Staggered diagonal of triangular spiral in A051682.
0, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 1653, 1830, 2016, 2211, 2415, 2628, 2850, 3081, 3321, 3570, 3828, 4095, 4371, 4656, 4950, 5253, 5565, 5886, 6216, 6555, 6903, 7260, 7626, 8001, 8385, 8778, 9180
Offset: 0
Examples
a(1)=9*1+0-3=6, a(2)=9*2+6-3=21, a(3)=9*3+21-3=45. For n=3, a(3) = -0^2+1^2-2^2+3^2-4^2+5^2-6^2+7^2-8^2+9^2 = 45.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Star illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50],n->Binomial(3*n+1,2)); # Muniru A Asiru, Feb 28 2019
-
Maple
seq(binomial(3*n+1,2), n=0..45); # Zerinvary Lajos, Jan 21 2007
-
Mathematica
LinearRecurrence[{3,-3,1},{0,6,21},50] (* Harvey P. Dale, Aug 29 2015 *)
-
PARI
a(n)=3*n*(3*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 6*C(n,1) + 9*C(n,2).
a(n) = 3*n*(3*n+1)/2.
G.f.: (6*x+3*x^2)/(1-x)^3.
a(n) = 3*A005449(n). - R. J. Mathar, Mar 27 2009
a(n) = 9*n+a(n-1)-3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 08 2010
a(n) = A218470(9n+5). - Philippe Deléham, Mar 27 2013
a(n) = Sum_{k=0..3n} (-1)^(n+k)*k^2. - Bruno Berselli, Aug 29 2013
E.g.f.: 3*exp(x)*x*(4 + 3*x)/2. - Stefano Spezia, Jun 06 2021
From Amiram Eldar, Aug 11 2022: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(3*sqrt(3)) - log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) + 4*log(2)/3 - 2. (End)
From Leo Tavares, Nov 23 2023: (Start)
Comments