cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083216 Fibonacci-like sequence of composite numbers with a(0) = 20615674205555510, a(1) = 3794765361567513.

Original entry on oeis.org

20615674205555510, 3794765361567513, 24410439567123023, 28205204928690536, 52615644495813559, 80820849424504095, 133436493920317654, 214257343344821749, 347693837265139403, 561951180609961152, 909645017875100555, 1471596198485061707, 2381241216360162262
Offset: 0

Views

Author

Harry J. Smith, Apr 23 2003

Keywords

Comments

a(0) = 20615674205555510, a(1) = 3794765361567513. This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Herbert S. Wilf in 1990.

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<20615674205555510, 3794765361567513>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 04 2013
  • Mathematica
    LinearRecurrence[{1,1},{20615674205555510,3794765361567513},25] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    Vec((20615674205555510-16820908843987997*x)/(1-x-x^2)+O(x^9)) \\ Charles R Greathouse IV, Sep 23 2012

Formula

a(n) = a(n-1) + a(n-2) for n>1.
G.f.: (20615674205555510-16820908843987997*x)/(1-x-x^2).

A083104 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 331635635998274737472200656430763, 1510028911088401971189590305498785.

Original entry on oeis.org

331635635998274737472200656430763, 1510028911088401971189590305498785, 1841664547086676708661790961929548, 3351693458175078679851381267428333, 5193358005261755388513172229357881, 8545051463436834068364553496786214
Offset: 0

Views

Author

Harry J. Smith, Apr 23 2003

Keywords

Comments

This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Ronald Graham in 1964.

Crossrefs

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083105, A083216, A082411, A221286.

Programs

  • Mathematica
    LinearRecurrence[{1,1},{331635635998274737472200656430763,1510028911088401971189590305498785},7] (* Harvey P. Dale, Oct 29 2016 *)
  • PARI
    a(n)=331635635998274737472200656430763*fibonacci(n-1)+ 1510028911088401971189590305498785*fibonacci(n) \\ Charles R Greathouse IV, Dec 18 2014

Formula

G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1-x-x^2). - Colin Barker, Jun 19 2012

Extensions

Name clarified by Robert C. Lyons, Feb 07 2025

A083105 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 62638280004239857, 49463435743205655.

Original entry on oeis.org

62638280004239857, 49463435743205655, 112101715747445512, 161565151490651167, 273666867238096679, 435232018728747846, 708898885966844525, 1144130904695592371, 1853029790662436896, 2997160695358029267, 4850190486020466163, 7847351181378495430
Offset: 0

Views

Author

Harry J. Smith, Apr 23 2003

Keywords

Comments

a(0) = 62638280004239857, a(1) = 49463435743205655. This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by D. E. Knuth in 1990.

Crossrefs

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083104, A083216, A082411, A221286.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<62638280004239857, 49463435743205655>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 20 2021
  • Mathematica
    LinearRecurrence[{1,1},{62638280004239857,49463435743205655},20] (* Paolo Xausa, Nov 07 2023 *)

Formula

G.f.: (62638280004239857-13174844261034202*x)/(1-x-x^2). [Colin Barker, Jun 19 2012]

Extensions

Name clarified by Robert C. Lyons, Feb 07 2025

A221286 Vsemirnov's sequence.

Original entry on oeis.org

106276436867, 35256392432, 141532829299, 176789221731, 318322051030, 495111272761, 813433323791, 1308544596552, 2121977920343, 3430522516895, 5552500437238, 8983022954133, 14535523391371, 23518546345504, 38054069736875, 61572616082379, 99626685819254, 161199301901633, 260825987720887, 422025289622520
Offset: 0

Views

Author

Keywords

Comments

A primefree linear recurrence with no common factors. As of 2004 no such sequences with smaller starting terms were known.

Crossrefs

Other primefree linear recurrences: A083104 (Graham 1964), A082411 (Nicol 1999), A083105 (Knuth 1990), A083216 (Wilf 1990).

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<106276436867, 35256392432>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 04 2013
  • Mathematica
    LinearRecurrence[{1, 1}, {106276436867, 35256392432}, 20] (* Alonso del Arte, Feb 05 2013 *)
  • PARI
    Vec((106276436867-71020044435*x)/(1-x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Dec 09 2014

Formula

a(n) = a(n-1) + a(n-2).
G.f.: (106276436867-71020044435*x)/(1-x-x^2).

Extensions

Offset corrected by Alois P. Heinz, Apr 04 2013

A347904 Array read by antidiagonals, m, n >= 1: T(m,n) is the first prime (after the two initial terms) in the Fibonacci-like sequence with initial terms m and n, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 3, 7, 0, 5, 5, 5, 5, 5, 11, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 23, 0, 13, 0, 11, 0, 17, 17, 41, 0, 23, 13, 0, 11, 19, 19, 0, 17, 0, 0, 0, 13, 0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 23, 0, 0, 0, 19, 0, 17, 0, 0, 0, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Pontus von Brömssen, Sep 18 2021

Keywords

Comments

There are cases where T(m,n) = 0 even when m and n are coprime; see A082411, A083104, A083105, A083216, and A221286. The smallest (in the sense that m+n is as small as possible) known case where this occurs appears to be m = 106276436867, n = 35256392432 (Vsemirnov's sequence, A221286).

Examples

			Array begins:
  m\n|  1  2  3  4  5  6  7  8  9 10  11 12  13  14 15 16
  ---+---------------------------------------------------
   1 |  2  3  7  5 11  7 23 17 19 11  23 13  41  29 31 17
   2 |  3  0  5  0  7  0 41  0 11  0  13  0  43   0 17  0
   3 |  5  5  0  7 13  0 17 11  0 13 103  0  29  17  0 19
   4 |  5  0  7  0 23  0 11  0 13  0  41  0  17   0 19  0
   5 |  7  7 11 13  0 11 19 13 23  0  43 17  31  19  0 37
   6 |  7  0  0  0 11  0 13  0  0  0  17  0  19   0  0  0
   7 | 17 11 13 11 17 13  0 23 41 17  29 19  53   0 37 23
   8 | 19  0 11  0 13  0 37  0 17  0  19  0  89   0 23  0
   9 | 11 11  0 13 19  0 23 17  0 19  31  0 149  23  0 41
  10 | 11  0 13  0  0  0 17  0 19  0  53  0  23   0  0  0
  11 | 13 13 17 19 37 17 43 19 29 31   0 23  37 103 41 43
  12 | 13  0  0  0 17  0 19  0  0  0  23  0 101   0  0  0
  13 | 29 17 19 17 23 19 47 29 31 23  59 37   0  41 43 29
  14 | 31  0 17  0 19  0  0  0 23  0  61  0  67   0 29  0
  15 | 17 17  0 19  0  0 29 23  0  0  37  0  41  29  0 31
  16 | 17  0 19  0 47  0 23  0 59  0 103  0  29   0 31  0
T(2,7) = 41, because the first prime in A022113, excluding the two initial terms, is 41.
		

Crossrefs

Programs

  • Python
    # Note that in the (rare) case when m and n are coprime but there are no primes in the Fibonacci-like sequence, this function will go into an infinite loop.
    from sympy import isprime,gcd
    def A347904(m,n):
        if gcd(m,n) != 1:
            return 0
        m,n = n,m+n
        while not isprime(n):
            m,n = n,m+n
        return n

Formula

T(m,n) = 0 if m and n have a common factor.
T(m,n) = T(n,m+n) if m+n is not prime, otherwise T(m,n) = m+n.

A347905 Array read by antidiagonals, m, n >= 1: T(m,n) is the position of the first prime (after the two initial terms) in the Fibonacci-like sequence with initial terms m and n, or 0 if no such prime exists.

Original entry on oeis.org

2, 2, 2, 3, 0, 3, 2, 2, 2, 2, 3, 0, 0, 0, 3, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 3, 0, 4, 3, 5, 0, 4, 3, 0, 3, 4, 3, 0, 3, 0, 0, 0, 3, 0, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 6, 0, 3, 0, 0, 0, 3, 0, 3, 0, 4
Offset: 1

Views

Author

Pontus von Brömssen, Sep 18 2021

Keywords

Comments

There are cases where T(m,n) = 0 even when m and n are coprime; see A082411, A083104, A083105, A083216, and A221286.
The largest value of T(m,n) for m, n <= 5000 is T(1591,300) = 17262.

Examples

			Array begins:
  m\n|  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  ---+------------------------------------------------------------
   1 |  2  2  3  2  3  2  4  3  3  2  3  2  4  3  3  2  4  2  4  3
   2 |  2  0  2  0  2  0  5  0  2  0  2  0  4  0  2  0  2  0  4  0
   3 |  3  2  0  2  3  0  3  2  0  2  6  0  3  2  0  2  3  0  3  2
   4 |  2  0  2  0  4  0  2  0  2  0  4  0  2  0  2  0  4  0  2  0
   5 |  3  2  3  3  0  2  3  2  3  0  4  2  3  2  0  3  4  2  3  0
   6 |  2  0  0  0  2  0  2  0  0  0  2  0  2  0  0  0  2  0  5  0
   7 |  4  3  3  2  3  2  0  3  4  2  3  2  4  0  3  2  3  3  4  3
   8 |  4  0  2  0  2  0  4  0  2  0  2  0  5  0  2  0  4  0  4  0
   9 |  3  2  0  2  3  0  3  2  0  2  3  0  6  2  0  3  3  0  3  2
  10 |  2  0  2  0  0  0  2  0  2  0  4  0  2  0  0  0  4  0  2  0
  11 |  3  2  3  3  4  2  4  2  3  3  0  2  3  5  3  3  4  2  4  2
  12 |  2  0  0  0  2  0  2  0  0  0  2  0  5  0  0  0  2  0  2  0
  13 |  4  3  3  2  3  2  4  3  3  2  4  3  0  3  3  2  3  2  4  3
  14 |  4  0  2  0  2  0  0  0  2  0  4  0  4  0  2  0  2  0  5  0
  15 |  3  2  0  2  0  0  3  2  0  0  3  0  3  2  0  2  6  0  3  0
  16 |  2  0  2  0  4  0  2  0  4  0  5  0  2  0  2  0  4  0  4  0
  17 |  3  2  3  5 10  2  3  6  4  3  4  2  3  2  3  5  0  3  7  2
  18 |  2  0  0  0  2  0  5  0  0  0  2  0  2  0  0  0  5  0  2  0
  19 |  4  3  4  2  3  3  4  5  3  2  3  2  6  3  4  5  3  2  0  3
  20 |  4  0  2  0  0  0  4  0  2  0  2  0  4  0  0  0  2  0  4  0
T(2,7) = 5, because 5 is the smallest k >= 2 for which A022113(k) is prime.
		

Crossrefs

Programs

  • Python
    # Note that in the (rare) case when m and n are coprime but there are no primes in the Fibonacci-like sequence, this function will go into an infinite loop.
    from sympy import isprime,gcd
    def A347905(m,n):
        if gcd(m,n) != 1:
            return 0
        m,n = n,m+n
        k=2
        while not isprime(n):
            m,n = n,m+n
            k += 1
        return k

Formula

T(m,n) = 0 if m and n have a common factor.
T(m,n) = T(n,m+n) + 1 if m+n is not prime, otherwise T(m,n) = 2.

A348204 Fibonacci-like sequence of composite numbers with a(0) = 759135467284, a(1) = 74074527465.

Original entry on oeis.org

759135467284, 74074527465, 833209994749, 907284522214, 1740494516963, 2647779039177, 4388273556140, 7036052595317, 11424326151457, 18460378746774, 29884704898231, 48345083645005, 78229788543236, 126574872188241, 204804660731477, 331379532919718, 536184193651195
Offset: 0

Views

Author

Chittaranjan Pardeshi, Oct 06 2021

Keywords

Comments

This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes.
This sequence was found using Knuth's method.

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<759135467284, 74074527465>>)[1, 1]:
    seq(a(n), n=0..16);  # Alois P. Heinz, Oct 06 2021
  • Mathematica
    LinearRecurrence[{1, 1}, {759135467284, 74074527465}, 17] (* Amiram Eldar, Oct 07 2021 *)
  • PARI
    a(n)=759135467284*fibonacci(n-1)+ 74074527465*fibonacci(n)

Formula

a(n) = a(n-1) + a(n-2).
Showing 1-7 of 7 results.