cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082582 Expansion of (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0

Views

Author

Emanuele Munarini, May 07 2003

Keywords

Comments

a(n) is the number of Dyck paths of semilength n with no UUDD. See A025242 for a bijection between paths avoiding DDUU versus UUDD.
Also number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=1. - Alois P. Heinz, Oct 07 2015
a(n) is the number of bargraphs of semiperimeter n (n>=2). Example: a(4) = 5; the 5 bargraphs correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]. - Emeric Deutsch, May 20 2016 [a(n) are the row sums of A271942 for n >= 2. Peter Luschny, Oct 18 2020]
a(n) is the number of skew Motzkin paths of length n. A skew Motzkin path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down), F=(1,0) (flat) and A=(-1,1) (anti-down) so that down and anti-down steps do not overlap. - Sergey Kirgizov, Oct 03 2018
From Gus Wiseman, Jul 04 2019: (Start)
Conjecture: Also the number of maximal simple graphs with vertices {1..n} and no weakly nesting edges. Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. For example, the a(1) = 1 through a(5) = 13 edge-sets are:
{} {12} {13} {14} {15}
{12,23} {12,24} {12,25}
{13,24} {13,25}
{13,34} {14,25}
{12,23,34} {14,35}
{14,45}
{12,23,35}
{12,24,35}
{12,24,45}
{13,24,35}
{13,24,45}
{13,34,45}
{12,23,34,45}
(End)
a(n) is the number of Dyck n-paths in which no nonterminal descent has the same length as the preceding ascent. Example: a(3) = 2 counts UUDUDD and UUUDDD where the latter path qualifies because DDD is the terminal descent. - David Callan, Dec 14 2021

Examples

			1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 275*x^8 + ...
a(3)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003
		

Crossrefs

Apart from initial term, same as A025242.
See A086581 for Dyck paths avoiding DDUU.
Cf. A000108, A218321, A263316, A271942 (refinement).
Column k=0 of A098978.

Programs

  • Haskell
    a082582 n = a082582_list !! n
    a082582_list = 1 : 1 : f [1,1] where
       f xs'@(x:_:xs) = y : f (y : xs') where
         y = x + sum (zipWith (*) xs' $ reverse xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Maple
    f:= gfun:-rectoproc({(n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2},a(n),remember):
    map(f,[$0..100]); # Robert Israel, May 20 2016
  • Mathematica
    a[0]=1;a[n_Integer]:=a[n]=a[n-1]+Sum[a[k]*a[n-1-k],{k,2,n-1}];Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    a[ n_] := SeriesCoefficient[ 2 / (1 + x^2 + Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, n}] (* Michael Somos, Jul 01 2011 *)
    a[n_] := Sum[HypergeometricPFQ[{-k, 3 + k, k - n}, {1, 2}, 1], {k, 0, n}];
    Join[{1, 1}, Table[a[n], {n, 0, 26}]] (* Peter Luschny, Oct 18 2020 *)
  • Maxima
    a(n):=sum(sum((binomial(n-k-2,j)*binomial(k,j)*binomial(k+j+2,j))/(j+1),j,0,n-k-1),k,0,n-2); /* Vladimir Kruchinin, Oct 18 2020 */
  • PARI
    {a(n) = polcoeff( (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4 + x^2 * O(x^n))) / 2, n+1)} /* Michael Somos, Jul 22 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4 + x * O(x^n))),n))} /* Michael Somos, Jul 01 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = O(x); for( k = 0, n, A = 1 / (1 + x^2 - x * A)); polcoeff( A, n))} /* Michael Somos, Mar 28 2011 */
    

Formula

G.f.: (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) = 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4)).
G.f. A(x) satisfies the equation 0 = 1 - (1 + x^2) * A(x) + x * A(x)^2. - Michael Somos, Jul 22 2003
G.f. A(x) satisfies A(x) = 1 / (1 + x^2 - x * A(x)). - Michael Somos, Mar 28 2011
G.f. A(x) = 1 / (1 + x^2 - x / (1 + x^2 - x / (1 + x^2 - ... ))) continued fraction. - Michael Somos, Jul 01 2011
Series reversion of x * A(x) is x * A007477(-x). - Michael Somos, Jul 22 2003
a(n+1) = a(n) + Sum(a(k)*a(n-k): k=2..n), a(0) = a(1) = 1. - Reinhard Zumkeller, Nov 13 2012
G.f.: 1 + x - x*G(0), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
D-finite with recurrence: (n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4) = 0. - Robert Israel, May 20 2016
a(n) = Sum_{k=0..n-2} Sum_{j=0..n-k-1} C(n-k-2,j)*C(k,j)*C(k+j+2,j)/(j+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Oct 18 2020
a(n) = Sum_{k=0..n-2} HypergeometricPFQ[{-k, 3 +k, k - n + 2}, {1, 2}, 1] for n >= 2. - Peter Luschny, Oct 18 2020
a(n) ~ sqrt(2+r) / (2 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.295597742522084... is the real root of the equation r^3 + r^2 + 3*r - 1 = 0. - Vaclav Kotesovec, Jun 05 2022
G.f.: 1/G(x), with G(x) = 1 - (x-x^2)/(1-x/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 11 2023