cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054412 Numbers k such that, in the prime factorization of k, the product of exponents equals the product of prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 800, 1458, 3125, 5120, 6272, 12500, 21600, 30375, 36000, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 395136, 600000, 653184, 750141, 823543, 857304, 979776, 1384448, 1474560, 1500000
Offset: 1

Views

Author

Leroy Quet, May 09 2000

Keywords

Comments

For p prime, numbers of the form p^p satisfy the condition, hence A051674 is a subsequence. - Michel Marcus, May 19 2014
Also, numbers of the form p^q * q^p, with distinct primes p and q, satisfy the condition, hence A082949 is a subsequence. - Bernard Schott, Apr 11 2020

Examples

			192 is included because 192 =2^6 *3^1 and 2*3 = 6*1.
		

Crossrefs

Programs

  • Mathematica
    peppfQ[n_]:=Module[{f=Transpose[FactorInteger[n]]},Times@@First[f] == Times@@Last[f]]; Select[Range[1.5*10^6],peppfQ] (* Harvey P. Dale, Oct 14 2015 *)
  • PARI
    isok(n) = my(f = factor(n)); prod(i=1, #f~, f[i,2]) == prod(i=1, #f~, f[i,1]); \\ Michel Marcus, May 19 2014
    
  • PARI
    \\ See Links section.

Extensions

More terms from James Sellers, May 23 2000
New name and three more terms from Michel Marcus, May 19 2014

A008478 Integers of the form Product p_j^k_j = Product k_j^p_j; p_j in A000040.

Original entry on oeis.org

1, 4, 16, 27, 72, 108, 432, 800, 3125, 6272, 12500, 21600, 30375, 50000, 84375, 121500, 169344, 225000, 247808, 337500, 486000, 750141, 823543, 1350000, 1384448, 3000564, 3294172, 6690816, 12002256, 13176688, 19600000, 22235661, 37380096, 37879808, 59295096, 88942644
Offset: 1

Views

Author

Keywords

Comments

Fixed points of A008477.
a(3) = 16 is the only term of the form p^q with p <> q. - Bernard Schott, Mar 28 2021

Examples

			16 = 2^4 = 4^2.
27 = 3^3.
108 = 2^2*3^3.
6272 = 2^7*7^2.
121500 = 2^2 * 3^5*5^3.
		

Crossrefs

Some subsequences: p_i^p_i (A051674), Product_i {p_i^p_i} (A048102), Product_(j,k)(p_j^p_k * p_k^p_j) with p_j < p_k (A082949) (see examples).

Programs

  • Mathematica
    f[n_] := Product[{p, e} = pe; e^p, {pe, FactorInteger[n]}];
    Reap[For[n = 1, n <= 10^8, n++, If[f[n] == n, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 29 2021 *)
  • PARI
    for(n=2,10^8,if(n==prod(i=1,omega(n), component(component(factor(n),2),i)^component(component(factor(n),1),i)),print1(n,",")))

Extensions

More terms from David W. Wilson
a(34)-a(36) from Jean-François Alcover, Mar 29 2021

A098096 Numbers of the form p^2 * 2^p for p prime.

Original entry on oeis.org

16, 72, 800, 6272, 247808, 1384448, 37879808, 189267968, 4437573632, 451508436992, 2063731785728, 188153927303168, 3696558092582912, 16263975998062592, 310889111776919552, 25301222706567446528
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 14 2004

Keywords

Comments

a(n) = A001248(n) * A034785(n). - Reinhard Zumkeller, Feb 07 2015

Crossrefs

Cf. A082949, numbers of the form p^q * q^p, with distinct primes p and q.

Programs

  • Haskell
    a098096 n = a001248 n * a034785 n  -- Reinhard Zumkeller, Feb 07 2015
  • Mathematica
    Table[2^Prime[p]*Prime[p]^2, {p, 16}] (* Alonso del Arte, Oct 28 2005 *)
  • PARI
    forprime(p=2,53,print1(p^2*2^p,","))
    

Extensions

More terms from Klaus Brockhaus and Ray Chandler, Sep 15 2004

A113855 Numbers whose prime factors are raised to the powers of each other.

Original entry on oeis.org

72, 800, 6272, 30375, 247808, 750141, 1384448, 37879808, 189267968, 235782657, 1313046875, 1749600000, 3502727631, 4437573632, 338751673344, 451508436992, 634465620819, 2063731785728, 7863818359375, 7971951402153, 188153927303168
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Comments

More precisely, n is a term iff n = prod(p_i^(sopf(n)-p_i)), where n has at least two distinct prime factors p_i and sopf(n) = A008472(n). - Rick L. Shepherd, Feb 02 2006

Examples

			72 = 8*9 = 2^3*3^2. So primes 2 and 3 are raised to the power of each other.
800 = 2^5*5^2 = 2 to the power 5 times 5 to the power 2.
		

Crossrefs

Cf. A082949 (numbers of the form p^q * q^p, p, q distinct primes), A008472 (sum of distinct prime factors of n).

Programs

  • PARI
    allpwrfact(n) = { local(x, a, b); a = vector(50); a[1] = 2^3*3^2; a[2] = 2^5*5^2; a[3] = 2^7*7^2; a[4] = 2^11*11^2; a[5] = 2^13*13^2; a[6] = 2^17*17^2; a[7] = 2^19*19^2; a[8] = 2^23*23^2; a[9] = 2^29*29^2; a[10]= 2^31*31^2; a[11]= 2^37*37^2; a[12]= 2^41*41^2; a[13]= 3^5*5^3; a[14]= 3^7*7^3; a[15]= 3^11*11^3; a[16]= 3^13*13^3; a[17]= 3^17*17^3; a[18]= 3^19*19^3; a[19]= 3^23*23^3; a[20]= 3^29*29^3; a[21]= 3^31*31^3; a[22]= 3^37*37^3; a[23]= 2^3*2^5*3^2*3^5*5^2*5^3; a[24]= 2^3*2^7*3^2*3^7*7^2*7^3; a[25]= 2^5*2^7*5^2*5^7*7^2*7^5; a[26]= 2^5*2^11*5^2*5^11*11^2*11^5; a[27]= 3^5*3^7*5^3*5^7*7^3*7^5; a[28]=5^7*7^5; a[29]=5^11*11^5; b= vecsort(a); for(x=1, 42, if(b[x]<>0, print1(b[x]", "))) } (Shepherd)

Extensions

Corrected by Rick L. Shepherd, Feb 02 2006

A276372 Numbers n such that, in the prime factorization of n, the list of the exponents is a rotation of the list of the prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 800, 3125, 6272, 12500, 30375, 36000, 48600, 84375, 247808, 337500, 395136, 750141, 823543, 857304, 1384448, 3294172, 22235661, 24532992, 37879808, 53782400, 88942644, 122500000, 161980416, 171478296, 189267968, 235782657, 600112800, 1313046875, 2155524696
Offset: 1

Views

Author

Robert C. Lyons, Aug 31 2016

Keywords

Examples

			4 is in the sequence because the prime factorization of 4 is 2^2, and the list of exponents (i.e., [2]) is a rotation of the list of prime factors (i.e., [2]).
36000 is in the sequence because the prime factorization of 36000 is 2^5 * 3^2 * 5^3, and the list of exponents (i.e., [5, 2, 3]) is a rotation of the list of prime factors (i.e., [2, 3, 5]).
84 is not in the sequence because the prime factorization of 84 is 2^2 * 3^1 * 7^1, and the list of exponents (i.e., [2, 1, 1]) is not a rotation of the list of prime factors (i.e., [2, 3, 7]).
21600 is not in the sequence because the prime factorization of 21600 is 2^5 * 3^3 * 5^2, and the list of exponents (i.e., [5, 3, 2]) is not a rotation of the list of prime factors (i.e., [2, 3, 5]).
		

Crossrefs

Subsequence of A122406 and of A056166. A048102 is a subsequence.

Programs

  • Mathematica
    Select[Range[10^6], Function[w, Total@ Boole@ Map[First@ w == # &, RotateLeft[Last@ w, #] & /@ Range[Length@ Last@ w]] > 0]@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, Sep 01 2016 *)
  • Sage
    def in_seq( n ):
        if n == 1: return True
        pf = list( factor( n ) )
        primes    = [ t[0] for t in pf ]
        exponents = [ t[1] for t in pf ]
        if primes[0] in exponents:
            i = exponents.index(primes[0])
            exp_rotated = exponents[i : ] + exponents[0 : i]
            return primes == exp_rotated
        else:
            return False
    print([n for n in range(1, 10000000) if in_seq(n)])
    
  • Sage
    # Much faster program that generates the solutions rather than searching for them.
    from sage.misc.misc import powerset
    primes = primes_first_n(9)
    max_prime = primes[-1]
    solutions = set([1])
    max_solution = min(2^max_prime * max_prime^2, max_prime^max_prime)
    for subset in powerset(primes):
        subset_list = list(subset)
        for i in range(0, len(subset_list)):
            exponents = subset_list[i : ] + subset_list[0 : i]
            product = 1
            for j in range(0, len(subset_list)):
                product = product * subset_list[j]^exponents[j]
            if product <= max_solution:
                solutions.add(product)
    print(sorted(solutions))

A356433 Numbers k such that, in the prime factorization of k, the least common multiple of the exponents equals the least common multiple of the prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 576, 800, 1458, 1728, 2916, 3125, 5120, 5832, 6272, 12500, 21600, 25600, 30375, 36000, 46656, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 388800, 395136, 583200, 600000, 653184, 691200, 750141, 802816, 823543, 857304, 979776
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 07 2022

Keywords

Comments

Numbers k such that A072411(k) = A007947(k). - Michel Marcus, Aug 29 2022
Terms p^p, p prime, form the subsequence A051674. - Bernard Schott, Sep 21 2022
Terms p^q * q^p with distinct primes p and q form the subsequence A082949. - Bernard Schott, Feb 01 2023

Examples

			576 = 2^6 * 3^2, lcm(2,3) = 6 = lcm(6,2), hence 576 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal @@ LCM @@ FactorInteger[#] &] (* Amiram Eldar, Aug 07 2022 *)
  • PARI
    isok(k) = my(f=factor(k)); lcm(f[,1]) == lcm(f[,2]); \\ Michel Marcus, Aug 07 2022
    
  • Python
    from math import lcm
    from sympy import factorint
    def ok(n): f = factorint(n); return lcm(*f.keys()) == lcm(*f.values())
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 07 2022
Showing 1-6 of 6 results.