1, 1, 3, 1, 8, 3, 14, 1, 8, 8, 24, 3, 24, 14, 52, 1, 8, 8, 24, 8, 64, 24, 112, 3, 24, 24, 72, 14, 112, 52, 216, 1, 8, 8, 24, 8, 64, 24, 112, 8, 64, 64, 192, 24, 192, 112, 416, 3, 24, 24, 72, 24, 192, 72, 336, 14, 112, 112, 336, 52, 416, 216, 848, 1, 8, 8, 24, 8, 64, 24, 112, 8, 64, 64, 192
Offset: 1
The entries may be arranged into blocks of sizes 1,2,4,8,...:
B_0: 1,
B_1: 1, 3,
B_2: 1, 8, 3, 14,
B_3: 1, 8, 8, 24, 3, 24, 14, 52,
B_4: 1, 8, 8, 24, 8, 64, 24, 112, 3, 24, 24, 72, 14, 112, 52, 216,
B_5: 1, 8, 8, 24, 8, 64, 24, 112, 8, 64, 64, 192, 24, 192, 112, 416, 3, 24, 24, 72, 24, 192, 72, 336, 14, 112, 112, 336, 52, 416, 216, 848,
...
The first half of each block is equal to 1 followed by 8 times an initial segment of the sequence itself.
The next quarter of each block consists of 3 times (1 followed by 8 times an initial segment of the sequence itself).
The next one-eighth of each block consists of 14 times (1 followed by 8 times an initial segment of the sequence itself).
And so on, the successive multipliers 1,3,14,52,... being given by A083424.
Also, the final quarter of any block consists of the twice the last half of the previous block added to eight times the full block before that.
Consider for example the 4th block,
[1, 8, 8, 24, 8, 64, 24, 112; 3, 24, 24, 72; 14, 112, 52, 216].
This is [1 8*(1,1,3,1,8,3,14); 3*(1 8*(1,1,3)); 2*(3,24,14,52)+8*(1,8,3,14)].
The final entries in the blocks give A083424.
See also the formula section.
.
From _Omar E. Pol_, Mar 18 2015: (Start)
Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below:
1;
..
1;
3;
........
1, 8;
3;
14;
................
1, 8, 8, 24;
3, 24;
14;
52;
..................................
1, 8, 8, 24, 8, 64, 24, 112;
3, 24, 24, 72;
14, 112;
52;
216;
.....................................................................
1, 8, 8, 24, 8, 64, 24, 112, 8, 64, 64, 192, 24, 192, 112, 416;
3, 24, 24, 72, 24, 192, 72, 336;
14, 112,112,336;
52, 416;
216;
848;
...
Note that T(s,r,k) = T(s+1,r,k).
(End)
Comments