A171160 a(n) = a(n-1) + 2*a(n-2) with a(0)=3, a(1)=4.
3, 4, 10, 18, 38, 74, 150, 298, 598, 1194, 2390, 4778, 9558, 19114, 38230, 76458, 152918, 305834, 611670, 1223338, 2446678, 4893354, 9786710, 19573418, 39146838, 78293674, 156587350, 313174698, 626349398, 1252698794, 2505397590, 5010795178, 10021590358
Offset: 0
Links
- J. Mulder, Table of n, a(n) for n = 0..2999
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Crossrefs
Programs
-
Mathematica
f[n_]:=2/(n+1);x=5;Table[x=f[x];Numerator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *) LinearRecurrence[{1,2},{3,4},40] (* Harvey P. Dale, Sep 04 2013 *)
-
PARI
Vec(-(x+3)/((x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Feb 10 2015
Formula
a(n) = (1/3)*(2*(-1)^n + 7*2^n), with n>=0. - Paolo P. Lava, Dec 14 2009
G.f.: -(x+3) / ((x+1)*(2*x-1)). - Colin Barker, Feb 10 2015
From Paul Curtz, Jun 03 2022: (Start)
a(n) = 2^(n+1) + A078008(n).
(a(n) + a(n+1) = a(n+2) - a(n) = A005009(n).)
a(n) + a(n+3) = A175805(n).
Extensions
Edited by N. J. A. Sloane, Dec 05 2009
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
More terms from Max Alekseyev, Apr 24 2010
Comments