cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A105330 Numbers n such that 2^(n+1)+2n+1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 13, 14, 26, 40, 49, 50, 110, 142, 170, 315, 349, 502, 842, 1251, 1630, 2054, 2906, 3482, 5110, 5227, 5620, 8224, 8788, 8912, 13027, 16243, 17222, 28557, 46532, 54974, 92866, 93093, 120855, 155416
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 28 2005

Keywords

Comments

If n is in the sequence & m=2^n*(2^(n+1)+2n+1) then sigma(m)+tau(m) =2m because sigma(m)=(2^(n+1)-1)*(2^(n+1)+2n+2), tau(m)=2*(n+1) so sigma(m)+tau(m)=(2^(n+1)-1)*(2^(n+1)+2n+2)+2*(n+1)=2m. Hence 2^A105330*(2^(A105330+1)+2*A105330+1) is a subsequence of A083874. A105331 is this subsequence. Next term is greater than 30500.
No other n < 10^5. -T. D. Noe, Jun 23 2008
No other n < 300000. - T. D. Noe, Apr 03 2009

Examples

			110 is in the sequence because 2^111+2*110+1=2596148429267413814265248164610269 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[m]], {m, 0, 30500}]
  • PARI
    is(n)=isprime(2^(n+1)+2*n+1) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

4 more terms from T. D. Noe, Jun 23 2008
Added two more terms -- T. D. Noe, Apr 03 2009

A238226 Numbers k such that if x = sigma(k) + tau(k) - k then k = sigma(x) + tau(x) - x.

Original entry on oeis.org

1, 3, 14, 52, 130, 144, 184, 274, 300, 586, 656, 8648, 10434, 11470, 12008, 15774, 17034, 18802, 19270, 21032, 22088, 22184, 23288, 34688, 35394, 36872, 38744, 39790, 65324, 65392, 67628, 68476, 153868, 163676, 188468, 198628, 254526, 263890, 379026, 463390
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2014

Keywords

Comments

A083874 is a subset of this sequence: it lists the fixed points of the transform n -> sigma(n)+tau(n)-n.

Examples

			Fixed points: 1, 3, 14, 52, 130, 184, 656, 8648, 12008, 34688, ...
sigma(144) = 403, tau(144) = 15 and 403 + 15 - 144 = 274.
sigma(274) = 414, tau(274) = 4 and 414 + 4 - 274 = 144.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q)local a,n;
    for n from 1 to q do a:=sigma(n)+tau(n)-n;
    if sigma(a)+tau(a)-a=n then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    f[n_] := DivisorSigma[0, n] + DivisorSigma[1, n] - n; s={}; Do[m = f[n]; If[f[m] == n, AppendTo[s, n]], {n, 1, 500000}]; s (* Amiram Eldar, Jul 12 2019 *)

A066229 f-perfect numbers, where f(m) = m + 1.

Original entry on oeis.org

4, 10, 44, 2336, 8896, 34432, 449295, 549775212544, 2251801457852416, 9007202677293056, 9223372167851278336, 20055918935605248255
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

f-perfect numbers are defined in A066218.
From Farideh Firoozbakht, Sep 18 2006: (Start)
n is in the sequence iff sigma(n) = 2*n - d(n) + 2, where d(n) is number of positive divisors of n.
If 2^(i+1) + 2*i - 1 is prime then n = 2^i*(2^(i+1) + 2*i - 1) is in the sequence because sigma(n) + d(n) - 2 = (2^(i+1) - 1)*(2^(i+1) + 2*i) + 2*(i+1) - 2 = 2^(2*i+2) + 2*i*2^(i+1) - 2^(i+1) = 2^(i+1)*(2^(i+1) + 2*i - 1) = 2*n, so sigma(n) = 2*n - d(n) + 2.
Hence if i is in {1, 2, 5, 6, 7, 19, 25, 26, 31, 38, 62, 80, 97, 110, 126, 133, 137, 409, 469, 685, 758, 1004, 1025, 1385, 2077, 2646, 2969, 3438, 7806, 8683, ...} then 2^i*(2^(i+1) + 2*i - 1) is in the sequence. 10, 44, 2336, 8896, 34432, 549775212544, 2251801457852416, 9007202677293056, 9223372167851278336, 151115727472444489859072, ... are such terms. (End)
Also, numbers n such that the number of nontrivial proper subgroups of a dihedral group D_{2n} is the same as its order. - Ivan Neretin, Jun 21 2016, after Dietrich Burde, see MSE link

Examples

			f(10) = 11 = 2 + 3 + 6 = f(1) + f(2) + f(5), hence 10 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 500000 ], DivisorSigma[ 1, # ] == 2# - DivisorSigma[ 0, # ] + 2 & ] (* Farideh Firoozbakht, Sep 18 2006 *)
    f[x_] := x + 1; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
  • PARI
    isok(m) = sigma(m) == 2*m-numdiv(m)+2; \\ Michel Marcus, Mar 13 2020

Extensions

a(8) from Giovanni Resta, Aug 21 2013
a(9)-a(11) from Farideh Firoozbakht confirmed and a(12) added by Max Alekseyev, Jul 30 2025

A105331 Numbers of the form 2^n*(2^(n+1)+2n+1) where 2^(n+1)+2n+1 is prime.

Original entry on oeis.org

3, 14, 52, 184, 656, 34688, 2118656, 134438912, 537346048, 9007202811510784, 2417851639318318791262208, 633825300114170432793740312576, 2535301200456572518883997515776
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 28 2005

Keywords

Comments

This sequence is a subsequence of A083874 (see A083874 & A105330).
This is because these numbers satisfy tau(n) + sigma(n) = 2n when n = 2^k * p with p is prime; for instance tau(14) + sigma(14) = 4 + 24 = 28 = 2 x 14. [See References.] - Bernard Schott, Apr 07 2017

Examples

			9007202811510784 is in the sequence because 9007202811510784 = 2^26*(2^27 + 2*26 + 1) and 2^27 + 2*26 + 1 is prime.
		

References

  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Problème 723, page 93.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[2^m(2^(m + 1) + 2m + 1)]], {m, 0, 110}]
    2^# (2^(#+1)+2#+1)&/@Select[Range[0,100],PrimeQ[2^(#+1)+2#+1]&] (* Harvey P. Dale, Nov 13 2012 *)

Formula

a(n) = 2^A105330(n)*(2^(A105330(n)+1) + 2*A105330(n) + 1). - Bernard Schott, Apr 07 2017

A173168 Primes of the form 2^k + 2k - 1.

Original entry on oeis.org

3, 7, 13, 23, 41, 271, 2069, 16411, 32797, 134217781, 2199023255633, 1125899906842723, 2251799813685349, 2596148429267413814265248164610269, 11150372599265311570767859136324180752990493
Offset: 1

Views

Author

T. D. Noe, Feb 11 2010

Keywords

Comments

Primes in A061761. The values of k-1 are in A105330. These primes, multiplied by 2^(k-1), produce A105331, which are a subset of the dihedral perfect numbers, A083874.

Programs

  • Mathematica
    g[n_]:=2^n+2*n-1; Select[Array[g,100], PrimeQ]

A320457 Lesser members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).

Original entry on oeis.org

144, 300, 10434, 15774, 17034, 21032, 22088, 35394, 36872, 65324, 67628, 153868, 188468, 254526, 379026, 483812, 492414, 905212, 1090528, 1198180, 1514212, 1634262, 1886046, 1898420, 2013414, 2184860, 2191588, 2316546, 2596448, 2816156, 3340024, 3854886
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.

Examples

			144 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
		

Crossrefs

Cf. A000005 (d), A000203 (sigma), A007503, A083874, A322254 (greater members).

Programs

  • Mathematica
    t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n] - n; s={}; Do[n = t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 100000}];s
  • PARI
    f(n) = numdiv(n) + sigma(n) - n;
    isok(n) = my(nn = f(n)); (nn > n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018

A322254 Greater members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).

Original entry on oeis.org

274, 586, 11470, 18802, 19270, 22184, 23288, 39790, 38744, 65392, 68476, 163676, 198628, 263890, 463390, 512116, 596258, 1070492, 1100384, 1342004, 1590452, 2139722, 2122946, 2262628, 2389562, 2562844, 2344436, 2831470, 2642656, 2949628, 3464008, 5476346
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.
The terms are ordered according to their lesser counterparts (A320457). - Amiram Eldar, Jul 03 2025

Examples

			274 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
		

Crossrefs

Cf. A000005 (d), A000203 (sigma), A007503, A083874, A320457 (lesser members).

Programs

  • Mathematica
    t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n]-n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m,1,100000}]; s
  • PARI
    f(n) = numdiv(n) + sigma(n) - n;
    isok(n) = my(nn = f(n)); (nn < n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018

A322256 Numbers k such that t(k) = t(k+1) where t(k) = tau(k) + sigma(k) = A007503(k) is the number of subgroups of the dihedral group of order 2k.

Original entry on oeis.org

14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 845126, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732, 6444873, 6771405, 10074477
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Keane asked if this sequence is infinite. Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.
Supersequence of A054004. Terms that are not in it are 845126, 14392646, 10461888478, ...

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | (NumberOfDivisors(n) + SumOfDivisors(n)) eq (NumberOfDivisors(n+1) + SumOfDivisors(n+1))]; // Vincenzo Librandi, Dec 08 2018
  • Mathematica
    t[n_] := DivisorSigma[0, n] + DivisorSigma[1, n]; tQ[n_] := t[n] == t[n + 1]; Select[Range[1000000], tQ]
  • PARI
    isok(n) = (numdiv(n)+sigma(n)) == (numdiv(n+1)+sigma(n+1)); \\ Michel Marcus, Dec 04 2018
    

A329104 Numbers m such that sigma(m) - tau(m) = 2m.

Original entry on oeis.org

56, 7192, 7232, 7912, 10792, 17272, 30592, 114256, 2154584, 3428368, 89245784
Offset: 1

Views

Author

Jaroslav Krizek, Nov 04 2019

Keywords

Comments

Abundant numbers m with abundance A(m) = tau(m).
Corresponding values of A(m) = tau(m): 8, 16, 14, 16, 16, 16, 16, 20, 32, 30, 32, ...
a(12) > 10^13, if it exists. - Giovanni Resta, Nov 07 2019

Examples

			Number 56 is in the sequence because sigma(56) - tau(56) = 2*56; 120 - 8 = 112.
		

Crossrefs

Cf. A083874 (deficient numbers m with deficiency D(m) = tau(m)).

Programs

  • Magma
    [m: m in [1..10^5] | SumOfDivisors(m) - NumberOfDivisors(m) eq 2*m];
    
  • Mathematica
    Select[Range[4*10^6], DivisorSigma[1, #] - DivisorSigma[0, #] == 2 # &] (* Amiram Eldar, Nov 04 2019 *)
  • PARI
    isok(m) = my(f=factor(m)); sigma(f) - numdiv(f) == 2*m; \\ Michel Marcus, Nov 05 2019

Extensions

a(11) from Amiram Eldar, Nov 04 2019

A328951 Numbers m such that sigma(m) + tau(m) = 3m.

Original entry on oeis.org

60, 5472, 2500704, 24361213461200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 10 2019

Keywords

Comments

Abundant numbers m with abundance A(m) = m - tau(m) = A049820(m), where A049820(n) is the number of non-divisors of n.
Subsequence of A056076.
Corresponding values of A(m) = m - tau(m): 48, 5436, 2500632, ...
4 is the only number m with deficiency D(m) = m - tau(m).
808989640739424 is also a term. - Giovanni Resta, Nov 14 2019

Examples

			60 is a term because sigma(60) + tau(60) = 3*60; 168 + 12 = 180 = 3*60.
		

Crossrefs

Cf. A083874 (numbers m such that sigma(m) + tau(m) = 2m).
Cf. A011251 (numbers m such that sigma(m) + phi(m) = 3m).
Cf. A329104 (numbers m with abundance A(m) = tau(m)).

Programs

  • Magma
    [m: m in [1..10^7] | SumOfDivisors(m) - 2*m eq m - NumberOfDivisors(m)];
    
  • Mathematica
    Select[Range[3*10^6], DivisorSigma[0, #] + DivisorSigma[1, #] == 3# &] (* Amiram Eldar, Nov 10 2019 *)
  • PARI
    isok(m) = my(f=factor(m)); sigma(f) + numdiv(m) == 3*m; \\ Michel Marcus, Nov 13 2019

Extensions

a(4) from Martin Ehrenstein, Jul 25 2023
Showing 1-10 of 10 results.