A105330
Numbers n such that 2^(n+1)+2n+1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 7, 10, 13, 14, 26, 40, 49, 50, 110, 142, 170, 315, 349, 502, 842, 1251, 1630, 2054, 2906, 3482, 5110, 5227, 5620, 8224, 8788, 8912, 13027, 16243, 17222, 28557, 46532, 54974, 92866, 93093, 120855, 155416
Offset: 1
110 is in the sequence because 2^111+2*110+1=2596148429267413814265248164610269 is prime.
-
Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[m]], {m, 0, 30500}]
-
is(n)=isprime(2^(n+1)+2*n+1) \\ Charles R Greathouse IV, Feb 20 2017
Added two more terms --
T. D. Noe, Apr 03 2009
A238226
Numbers k such that if x = sigma(k) + tau(k) - k then k = sigma(x) + tau(x) - x.
Original entry on oeis.org
1, 3, 14, 52, 130, 144, 184, 274, 300, 586, 656, 8648, 10434, 11470, 12008, 15774, 17034, 18802, 19270, 21032, 22088, 22184, 23288, 34688, 35394, 36872, 38744, 39790, 65324, 65392, 67628, 68476, 153868, 163676, 188468, 198628, 254526, 263890, 379026, 463390
Offset: 1
Fixed points: 1, 3, 14, 52, 130, 184, 656, 8648, 12008, 34688, ...
sigma(144) = 403, tau(144) = 15 and 403 + 15 - 144 = 274.
sigma(274) = 414, tau(274) = 4 and 414 + 4 - 274 = 144.
-
with(numtheory); P:=proc(q)local a,n;
for n from 1 to q do a:=sigma(n)+tau(n)-n;
if sigma(a)+tau(a)-a=n then print(n);
fi; od; end: P(10^6);
-
f[n_] := DivisorSigma[0, n] + DivisorSigma[1, n] - n; s={}; Do[m = f[n]; If[f[m] == n, AppendTo[s, n]], {n, 1, 500000}]; s (* Amiram Eldar, Jul 12 2019 *)
A066229
f-perfect numbers, where f(m) = m + 1.
Original entry on oeis.org
4, 10, 44, 2336, 8896, 34432, 449295, 549775212544, 2251801457852416, 9007202677293056, 9223372167851278336, 20055918935605248255
Offset: 1
f(10) = 11 = 2 + 3 + 6 = f(1) + f(2) + f(5), hence 10 is a term of the sequence.
-
Select[ Range[ 500000 ], DivisorSigma[ 1, # ] == 2# - DivisorSigma[ 0, # ] + 2 & ] (* Farideh Firoozbakht, Sep 18 2006 *)
f[x_] := x + 1; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
-
isok(m) = sigma(m) == 2*m-numdiv(m)+2; \\ Michel Marcus, Mar 13 2020
A105331
Numbers of the form 2^n*(2^(n+1)+2n+1) where 2^(n+1)+2n+1 is prime.
Original entry on oeis.org
3, 14, 52, 184, 656, 34688, 2118656, 134438912, 537346048, 9007202811510784, 2417851639318318791262208, 633825300114170432793740312576, 2535301200456572518883997515776
Offset: 1
9007202811510784 is in the sequence because 9007202811510784 = 2^26*(2^27 + 2*26 + 1) and 2^27 + 2*26 + 1 is prime.
- J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Problème 723, page 93.
-
Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[2^m(2^(m + 1) + 2m + 1)]], {m, 0, 110}]
2^# (2^(#+1)+2#+1)&/@Select[Range[0,100],PrimeQ[2^(#+1)+2#+1]&] (* Harvey P. Dale, Nov 13 2012 *)
A173168
Primes of the form 2^k + 2k - 1.
Original entry on oeis.org
3, 7, 13, 23, 41, 271, 2069, 16411, 32797, 134217781, 2199023255633, 1125899906842723, 2251799813685349, 2596148429267413814265248164610269, 11150372599265311570767859136324180752990493
Offset: 1
A320457
Lesser members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).
Original entry on oeis.org
144, 300, 10434, 15774, 17034, 21032, 22088, 35394, 36872, 65324, 67628, 153868, 188468, 254526, 379026, 483812, 492414, 905212, 1090528, 1198180, 1514212, 1634262, 1886046, 1898420, 2013414, 2184860, 2191588, 2316546, 2596448, 2816156, 3340024, 3854886
Offset: 1
144 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
- Amiram Eldar, Table of n, a(n) for n = 1..420
- David W. Jensen and Michael K. Keane, A Number-Theoretic Approach to Subgroups of Dihedral Groups, USAFA-TR-90-2, Air Force Academy Colorado Springs, Colorado, 1990.
- David W. Jensen and Eric R. Bussian, A Number-Theoretic Approach to Counting Subgroups of Dihedral Groups, The College Mathematics Journal, Vol. 23, No. 2 (1992), pp. 150-152.
-
t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n] - n; s={}; Do[n = t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 100000}];s
-
f(n) = numdiv(n) + sigma(n) - n;
isok(n) = my(nn = f(n)); (nn > n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018
A322254
Greater members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).
Original entry on oeis.org
274, 586, 11470, 18802, 19270, 22184, 23288, 39790, 38744, 65392, 68476, 163676, 198628, 263890, 463390, 512116, 596258, 1070492, 1100384, 1342004, 1590452, 2139722, 2122946, 2262628, 2389562, 2562844, 2344436, 2831470, 2642656, 2949628, 3464008, 5476346
Offset: 1
274 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
- Amiram Eldar, Table of n, a(n) for n = 1..420
- David W. Jensen and Michael K. Keane, A Number-Theoretic Approach to Subgroups of Dihedral Groups, USAFA-TR-90-2, Air Force Academy Colorado Springs, Colorado, 1990.
- David W. Jensen and Eric R. Bussian, A Number-Theoretic Approach to Counting Subgroups of Dihedral Groups, The College Mathematics Journal, Vol. 23, No. 2 (1992), pp. 150-152.
-
t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n]-n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m,1,100000}]; s
-
f(n) = numdiv(n) + sigma(n) - n;
isok(n) = my(nn = f(n)); (nn < n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018
A322256
Numbers k such that t(k) = t(k+1) where t(k) = tau(k) + sigma(k) = A007503(k) is the number of subgroups of the dihedral group of order 2k.
Original entry on oeis.org
14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 845126, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732, 6444873, 6771405, 10074477
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..400
- David W. Jensen and Michael K. Keane, A Number-Theoretic Approach to Subgroups of Dihedral Groups, USAFA-TR-90-2, Air Force Academy Colorado Springs, Colorado, 1990.
- David W. Jensen and Eric R. Bussian, A Number-Theoretic Approach to Counting Subgroups of Dihedral Groups, The College Mathematics Journal, Vol. 23, No. 2 (1992), pp. 150-152.
-
[n: n in [1..2*10^6] | (NumberOfDivisors(n) + SumOfDivisors(n)) eq (NumberOfDivisors(n+1) + SumOfDivisors(n+1))]; // Vincenzo Librandi, Dec 08 2018
-
t[n_] := DivisorSigma[0, n] + DivisorSigma[1, n]; tQ[n_] := t[n] == t[n + 1]; Select[Range[1000000], tQ]
-
isok(n) = (numdiv(n)+sigma(n)) == (numdiv(n+1)+sigma(n+1)); \\ Michel Marcus, Dec 04 2018
A329104
Numbers m such that sigma(m) - tau(m) = 2m.
Original entry on oeis.org
56, 7192, 7232, 7912, 10792, 17272, 30592, 114256, 2154584, 3428368, 89245784
Offset: 1
Number 56 is in the sequence because sigma(56) - tau(56) = 2*56; 120 - 8 = 112.
Cf.
A083874 (deficient numbers m with deficiency D(m) = tau(m)).
-
[m: m in [1..10^5] | SumOfDivisors(m) - NumberOfDivisors(m) eq 2*m];
-
Select[Range[4*10^6], DivisorSigma[1, #] - DivisorSigma[0, #] == 2 # &] (* Amiram Eldar, Nov 04 2019 *)
-
isok(m) = my(f=factor(m)); sigma(f) - numdiv(f) == 2*m; \\ Michel Marcus, Nov 05 2019
A328951
Numbers m such that sigma(m) + tau(m) = 3m.
Original entry on oeis.org
60, 5472, 2500704, 24361213461200
Offset: 1
60 is a term because sigma(60) + tau(60) = 3*60; 168 + 12 = 180 = 3*60.
Cf.
A083874 (numbers m such that sigma(m) + tau(m) = 2m).
Cf.
A011251 (numbers m such that sigma(m) + phi(m) = 3m).
Cf.
A329104 (numbers m with abundance A(m) = tau(m)).
-
[m: m in [1..10^7] | SumOfDivisors(m) - 2*m eq m - NumberOfDivisors(m)];
-
Select[Range[3*10^6], DivisorSigma[0, #] + DivisorSigma[1, #] == 3# &] (* Amiram Eldar, Nov 10 2019 *)
-
isok(m) = my(f=factor(m)); sigma(f) + numdiv(m) == 3*m; \\ Michel Marcus, Nov 13 2019
Showing 1-10 of 10 results.
Comments