cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307883 Square array read by descending antidiagonals: T(n, k) where column k is the expansion of 1/sqrt(1 - 2*(k+1)*x + ((k-1)*x)^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 20, 1, 1, 5, 22, 63, 70, 1, 1, 6, 33, 136, 321, 252, 1, 1, 7, 46, 245, 886, 1683, 924, 1, 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1, 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1, 1, 10, 97, 848, 6145, 33876, 127905, 281488, 265729, 48620, 1
Offset: 0

Views

Author

Seiichi Manyama, May 02 2019

Keywords

Comments

Column k is the diagonal of the rational function 1 / ((1-x)*(1-y) - k*x*y). - Seiichi Manyama, Jul 11 2020
More generally, column k is the diagonal of the rational function r / ((1-r*x)*(1-r*y) + r-1 - (k+r-1)*r*x*y) for any nonzero real number r. - Seiichi Manyama, Jul 22 2020

Examples

			Square array begins:
  1,   1,    1,     1,      1,      1,      1, ...
  1,   2,    3,     4,      5,      6,      7, ...
  1,   6,   13,    22,     33,     46,     61, ...
  1,  20,   63,   136,    245,    396,    595, ...
  1,  70,  321,   886,   1921,   3606,   6145, ...
  1, 252, 1683,  5944,  15525,  33876,  65527, ...
  1, 924, 8989, 40636, 127905, 324556, 712909, ...
Seen as a triangle T(n, k):
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  1;
  [3] 1, 3,  6,   1;
  [4] 1, 4, 13,  20,    1;
  [5] 1, 5, 22,  63,   70,     1;
  [6] 1, 6, 33, 136,  321,   252,     1;
  [7] 1, 7, 46, 245,  886,  1683,   924,     1;
  [8] 1, 8, 61, 396, 1921,  5944,  8989,  3432,     1;
  [9] 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1;
		

Crossrefs

Columns k=0..6 give A000012, A000984, A001850, A069835, A084771, A084772, A098659.
Main diagonal gives A187021.
T(n,n+1) gives A335309.

Programs

  • Maple
    # Seen as a triangle read by rows:
    T := (n, k) -> simplify(hypergeom([-k, -k], [1], n - k)):
    seq(lprint(seq(T(n, k), k = 0..n)), n = 0..9);  # Peter Luschny, May 13 2024
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
    (* Seen as a triangle read by rows: *)
    T[n_, k_] := HypergeometricPFQ[{-k, -k}, {1}, n - k];
    Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, May 13 2024 *)

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 + (k+1)*x + k*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-1) * T(n-2,k).
T(n,k) = hypergeom([-k, -k], [1], n - k), (triangular form). - Detlef Meya, May 13 2024

A098659 Expansion of 1/sqrt((1-7*x)^2-24*x^2).

Original entry on oeis.org

1, 7, 61, 595, 6145, 65527, 712909, 7863667, 87615745, 983726695, 11112210781, 126142119187, 1437751935361, 16443380994775, 188609259215725, 2168833084841395, 24994269200292865, 288596644195946695, 3337978523215692925, 38666734085509918675
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2*6^k, {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Sep 15 2012 *)
    CoefficientList[Series[1/Sqrt[(1-7*x)^2-24*x^2], {x, 0, 25}], x] (* Stefano Spezia, Dec 04 2018 *)
    a[n_] := 5^n*HypergeometricPFQ[{-n,n+1},{1},-1/5]; Table[a[n],{n,0,19}] (* Detlef Meya, May 24 2024 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-14*x+25*x^2)) \\ Joerg Arndt, May 12 2013

Formula

G.f.: 1/sqrt(1-14*x+25*x^2).
E.g.f.: exp(7*x)*BesselI(0, 2*sqrt(6)*x).
a(n) = Sum_{k=0..n} C(n, k)^2*6^k.
a(n) = [x^n] (1+7*x+6*x^2)^n.
From Vaclav Kotesovec, Sep 15 2012: (Start)
General recurrence for Sum_{k=0..n} C(n,k)^2*x^k (this is case x=6): (n+2)*a(n+2)-(x+1)*(2*n+3)*a(n+1)+(x-1)^2*(n+1)*a(n)=0.
Asymptotic (Rob Noble, 2010): a(n) ~ (1+sqrt(x))^(2*n+1)/(2*x^(1/4)*sqrt(Pi*n)), this is case x=6. (End)
D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +25*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = 5^n*hypergeom([-n, n + 1], [1], -1/5). - Detlef Meya, May 24 2024

A335309 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^(n-k).

Original entry on oeis.org

1, 3, 22, 245, 3606, 65527, 1411404, 35066313, 985483270, 30869546411, 1065442493556, 40144438269949, 1638733865336764, 72012798200637855, 3388250516614331416, 169894851136173584145, 9041936334960057699654, 508945841697238471315027, 30202327515992972576218980
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^(n - k), {k, 0, n}], {n, 1, 18}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (n + 2) x + n^2 x^2], {x, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 Sqrt[n + 1] x], {x, 0, n}], {n, 0, 18}]
    Table[Hypergeometric2F1[-n, -n, 1, 1 + n], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*(n+1)^k); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = central coefficient of (1 + (n + 2)*x + (n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(n + 2)*x + n^2*x^2).
a(n) = n! * [x^n] exp((n + 2)*x) * BesselI(0,2*sqrt(n + 1)*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (n+1)^k.
a(n) ~ exp(2*sqrt(n)) * n^(n - 1/4) / (2*sqrt(Pi)) * (1 + 11/(12*sqrt(n))). - Vaclav Kotesovec, Jan 09 2023
Showing 1-3 of 3 results.