A080194 7-smooth numbers which are not 5-smooth.
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980
Offset: 1
Examples
28 = 2^2*7 is a term but 30 = 2*3*5 is not.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* Giovanni Resta, Nov 22 2018 *)
-
PARI
A080194_list(M)={my(L=List(),a,b,c); for(r=1,logint(M\1,7), a=7^r; for(s=0, logint(M\a,3), b=a*3^s; for(t=0,logint(M\b,5), c=b*5^t; for(u=0,logint(M\c,2), listput(L,c<A051037. - Edited by M. F. Hasler, Nov 22 2018
-
PARI
select( is_A080194(n)={n>1 && vecmax(factor(n,7)[,1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - M. F. Hasler, Nov 21 2018
-
Python
from sympy import integer_log def A080194(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): for k in range(integer_log(r:=m//5**j,3)[0]+1): c -= (r//3**k).bit_length() return c return bisection(f,n,n)*7 # Chai Wah Wu, Sep 17 2024
-
Python
# faster for initial segment of sequence import heapq from itertools import islice from sympy import primerange def A080194gen(p=7): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1)) while True: v = heapq.heappop(h) if v != oldv: yield 7*v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(A080194gen(), 65))) # Michael S. Branicky, Sep 17 2024
Formula
a(n) = 7 * A002473(n). - David A. Corneth, Nov 22 2018
Sum_{n>=1} 1/a(n) = 5/8. - Amiram Eldar, Nov 10 2020
Comments