cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A085130 Duplicate of A080194.

Original entry on oeis.org

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196
Offset: 1

Views

Author

Keywords

A085125 Even numbers which are 7-smooth.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 50, 54, 56, 60, 64, 70, 72, 80, 84, 90, 96, 98, 100, 108, 112, 120, 126, 128, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 210, 216, 224, 240, 250, 252, 256, 270, 280, 288, 294, 300, 320, 324, 336
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Equivalently, multiples of 2 with the largest prime divisor < 10.

Crossrefs

Programs

  • Mathematica
    Select[2*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Jul 06 2018 *)
  • Python
    from sympy import integer_log
    def A085125(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    for k in range(integer_log(r:=m//5**j,3)[0]+1):
                        c -= (r//3**k).bit_length()-1
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 31 2025

Formula

From Amiram Eldar, Sep 23 2024: (Start)
a(n) = 2*A002473(n).
Sum_{n>=1} 1/a(n) = 35/16. (End)

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Andrew Howroyd, Sep 19 2024

A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 45, 48, 54, 60, 63, 72, 75, 81, 84, 90, 96, 105, 108, 120, 126, 135, 144, 147, 150, 162, 168, 180, 189, 192, 210, 216, 225, 240, 243, 252, 270, 288, 294, 300, 315, 324, 336, 360, 375, 378, 384, 405, 420, 432, 441, 450
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Apr 10 2019 *)
  • Python
    from sympy import integer_log
    def A085126(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    for k in range(integer_log(r:=m//5**j,3)[0]+1):
                        c -= (r//3**k).bit_length()
            return c
        return bisection(f,n,n)*3 # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A085126gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 3*v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A085126gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = 3*A002473(n). - Chai Wah Wu, Sep 18 2024
Sum_{n>=1} 1/a(n) = 35/24. - Amiram Eldar, Sep 23 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed to 1 by Michael S. Branicky, Sep 17 2024

A085127 Multiples of 4 which are members of A002473. Or multiples of 4 with the largest prime divisor < 10.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 60, 64, 72, 80, 84, 96, 100, 108, 112, 120, 128, 140, 144, 160, 168, 180, 192, 196, 200, 216, 224, 240, 252, 256, 280, 288, 300, 320, 324, 336, 360, 384, 392, 400, 420, 432, 448, 480, 500, 504, 512, 540, 560, 576
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))),c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=2..floor(log[2](N)))]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[4Range[150],Last[FactorInteger[#]][[1]]<10&] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = 4*A002473(n). - Robert Israel, Mar 18 2018
Sum_{n>=1} 1/a(n) = 35/32. - Amiram Eldar, Sep 23 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Robert Israel, Mar 18 2018

A085131 Multiples of 8 which are 7-smooth.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 96, 112, 120, 128, 144, 160, 168, 192, 200, 216, 224, 240, 256, 280, 288, 320, 336, 360, 384, 392, 400, 432, 448, 480, 504, 512, 560, 576, 600, 640, 648, 672, 720, 768, 784, 800, 840, 864, 896, 960, 1000, 1008, 1024
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Equivalently, multiples of 8 with the largest prime divisor < 10.

Crossrefs

Programs

  • Mathematica
    Select[8*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Oct 22 2017 *)

Formula

From Amiram Eldar, Sep 22 2024: (Start)
a(n) = 8*A002473(n).
Sum_{n>=1} 1/a(n) = 35/64. (End)

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Andrew Howroyd, Sep 22 2024

A125624 Array read by antidiagonals: n-th row contains the positive integers with their largest prime factor equal to the n-th prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 7, 10, 9, 16, 11, 14, 15, 12, 32, 13, 22, 21, 20, 18, 64, 17, 26, 33, 28, 25, 24, 128, 19, 34, 39, 44, 35, 30, 27, 256, 23, 38, 51, 52, 55, 42, 40, 36, 512, 29, 46, 57, 68, 65, 66, 49, 45, 48, 1024, 31, 58, 69, 76, 85, 78, 77, 56, 50, 54, 2048, 37, 62, 87, 92
Offset: 1

Views

Author

Leroy Quet, Jan 27 2007

Keywords

Comments

This sequence is a permutation of the integers >= 2.
Since the table has been entered by rising instead of falling antidiagonals, the sequence represents the transpose, with columns instead of rows: cf. the "table" link, section "infinite square array". - M. F. Hasler, Oct 22 2019
Start with table headed by primes in the first row, then list beneath each prime(k) the ordered prime(k)-smooth numbers. Read the table by falling antidiagonals to get the terms of this sequence. - David James Sycamore, Jun 23 2024

Examples

			Array begins: (rows here appear as columns in the "table" display of the sequence)
   2,  4,  8, 16, 32, 64, 128, 256, 512, ... (A000079)
   3,  6,  9, 12, 18, 24,  27,  36,  48, ... (A065119)
   5, 10, 15, 20, 25, 30,  40,  45,  50, ... (A080193)
   7, 14, 21, 28, 35, 42,  49,  56,  63, ... (A080194)
  11, 22, 33, 44, 55, 66,  77,  88,  99, ... (A080195)
  13, 26, 39, 52, 65, 78,  91, 104, 117, ... (A080196)
The 3rd row, for example, contains the positive integers where the 3rd prime, 5, is the largest prime divisor. That is, each integer in this row is divisible by 5 and may be divisible by 2 or 3 as well, but none of the integers in this row are divisible by primes larger than 5. (So for example, 35 = 5*7 is excluded from the 3rd row.)
		

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[ -1, 1]];f[n_, m_] := f[n, m] = Block[{k},k = If[m == 1, Prime[n], f[n, m - 1] + 1];While[lpf[k] != Prime[n], k++ ];k];Table[f[ d - m + 1, m], {d, 12}, {m, d}] // Flatten (* Ray Chandler, Feb 09 2007 *)
  • PARI
    T=List(); r=c=1; for(n=1,99, #TT[r][1], ); print1(T[r][c]","); r-- && c++ || r=c+c=1) \\ M. F. Hasler, Oct 22 2019

Extensions

Extended by Ray Chandler, Feb 09 2007

A085128 Multiples of 5 which are members of A002473. Or multiples of 5 with the largest prime divisor <= 7.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 105, 120, 125, 135, 140, 150, 160, 175, 180, 200, 210, 225, 240, 245, 250, 270, 280, 300, 315, 320, 350, 360, 375, 400, 405, 420, 450, 480, 490, 500, 525, 540, 560, 600, 625, 630, 640, 675, 700
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Intersection of A008587 (multiples of 5) and A002473 (7-smooth numbers).

Programs

  • Mathematica
    With[{p = Prime[Range[4]]}, 5 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 22 2024 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (vecmax(factor(5*n)[,1]) <= 7, print1(5*n, ", ")););} \\ Michel Marcus, Aug 15 2017

Formula

a(n) = 5*A002473(n). - Michel Marcus, Aug 15 2017
Sum_{n>=1} 1/a(n) = 7/8. - Amiram Eldar, Sep 22 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset corrected by Michel Marcus, Aug 15 2017

A085129 Multiples of 6 which are 7-smooth.

Original entry on oeis.org

6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 72, 84, 90, 96, 108, 120, 126, 144, 150, 162, 168, 180, 192, 210, 216, 240, 252, 270, 288, 294, 300, 324, 336, 360, 378, 384, 420, 432, 450, 480, 486, 504, 540, 576, 588, 600, 630, 648, 672, 720, 750, 756, 768, 810, 840
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Equivalently, multiples of 6 with the largest prime divisor < 10.

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[4]]}, 6 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 23 2024 *)

Formula

From Amiram Eldar, Sep 22 2024: (Start)
a(n) = 6*A002473(n).
Sum_{n>=1} 1/a(n) = 35/48. (End)

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Andrew Howroyd, Sep 19 2024

A085132 Multiples of 9 which are 7-smooth.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 108, 126, 135, 144, 162, 180, 189, 216, 225, 243, 252, 270, 288, 315, 324, 360, 378, 405, 432, 441, 450, 486, 504, 540, 567, 576, 630, 648, 675, 720, 729, 756, 810, 864, 882, 900, 945, 972, 1008, 1080, 1125, 1134, 1152
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Equivalently, multiples of 9 with the largest prime divisor < 10.

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[4]]}, 9 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 23 2024 *)

Formula

From Amiram Eldar, Sep 22 2024: (Start)
a(n) = 9*A002473(n).
Sum_{n>=1} 1/a(n) = 35/72. (End)

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Andrew Howroyd, Sep 19 2024

A219697 Primes neighboring a 7-smooth number.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 239, 241, 251, 257, 269, 271, 281, 293, 337, 349, 359, 379, 383, 401, 419, 421, 431
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2012

Keywords

Comments

This is to the 7-smooth numbers A002473 as A219528 is to the 3-smooth numbers A003586 and as A219669 is to the 5-smooth numbers A051037. The first primes NOT within one of a 7-smooth number are 103, 131, 137, 157, 173, ...

Examples

			23 is in the sequence as one of 23-1 = 22 = 2 * 11 and 23+1 = 24 = 2^3 * 3 is 7-smooth and 23 is prime. - _David A. Corneth_, Apr 19 2021
		

Crossrefs

Programs

  • Mathematica
    mx = 2^10; t7 = Select[Sort[Flatten[Table[2^i * 3^j * 5^k * 7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, Log[5, mx]}, {l, 0, Log[7, mx]}]]], # <= mx &]; Union[Select[t7 + 1, PrimeQ], Select[t7 - 1, PrimeQ]] (* T. D. Noe, Nov 26 2012 *)
    Select[Prime[Range[90]],Max[FactorInteger[#-1][[;;,1]]]<11||Max[FactorInteger[#+1][[;;,1]]]<11&] (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    is7smooth(n) = forprime(p = 2, 7, n /= p^valuation(n, p)); n==1
    is(n) = isprime(n) && (is7smooth(n - 1) || is7smooth(n + 1)) \\ David A. Corneth, Apr 19 2021

Formula

Primes INTERSECTION {2^h 3^i 5^j 7^k +/-1 for h,i,j,k >= 0}.
Showing 1-10 of 14 results. Next