A085130 Duplicate of A080194.
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[2*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Jul 06 2018 *)
from sympy import integer_log def A085125(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): for k in range(integer_log(r:=m//5**j,3)[0]+1): c -= (r//3**k).bit_length()-1 return c return bisection(f,n,n) # Chai Wah Wu, Jan 31 2025
Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Apr 10 2019 *)
from sympy import integer_log def A085126(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): for k in range(integer_log(r:=m//5**j,3)[0]+1): c -= (r//3**k).bit_length() return c return bisection(f,n,n)*3 # Chai Wah Wu, Sep 17 2024
# faster for initial segment of sequence import heapq from itertools import islice def A085126gen(): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7] while True: v = heapq.heappop(h) if v != oldv: yield 3*v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(A085126gen(), 65))) # Michael S. Branicky, Sep 17 2024
N:= 1000: # to get all terms <= N sort([seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))),c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=2..floor(log[2](N)))]); # Robert Israel, Mar 18 2018
Select[4Range[150],Last[FactorInteger[#]][[1]]<10&] (* Harvey P. Dale, Aug 24 2011 *)
Select[8*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Oct 22 2017 *)
Array begins: (rows here appear as columns in the "table" display of the sequence) 2, 4, 8, 16, 32, 64, 128, 256, 512, ... (A000079) 3, 6, 9, 12, 18, 24, 27, 36, 48, ... (A065119) 5, 10, 15, 20, 25, 30, 40, 45, 50, ... (A080193) 7, 14, 21, 28, 35, 42, 49, 56, 63, ... (A080194) 11, 22, 33, 44, 55, 66, 77, 88, 99, ... (A080195) 13, 26, 39, 52, 65, 78, 91, 104, 117, ... (A080196) The 3rd row, for example, contains the positive integers where the 3rd prime, 5, is the largest prime divisor. That is, each integer in this row is divisible by 5 and may be divisible by 2 or 3 as well, but none of the integers in this row are divisible by primes larger than 5. (So for example, 35 = 5*7 is excluded from the 3rd row.)
lpf[n_] := FactorInteger[n][[ -1, 1]];f[n_, m_] := f[n, m] = Block[{k},k = If[m == 1, Prime[n], f[n, m - 1] + 1];While[lpf[k] != Prime[n], k++ ];k];Table[f[ d - m + 1, m], {d, 12}, {m, d}] // Flatten (* Ray Chandler, Feb 09 2007 *)
T=List(); r=c=1; for(n=1,99, #TT[r][1], ); print1(T[r][c]","); r-- && c++ || r=c+c=1) \\ M. F. Hasler, Oct 22 2019
With[{p = Prime[Range[4]]}, 5 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 22 2024 *)
lista(nn) = {for (n=1, nn, if (vecmax(factor(5*n)[,1]) <= 7, print1(5*n, ", ")););} \\ Michel Marcus, Aug 15 2017
With[{p = Prime[Range[4]]}, 6 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 23 2024 *)
With[{p = Prime[Range[4]]}, 9 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 23 2024 *)
23 is in the sequence as one of 23-1 = 22 = 2 * 11 and 23+1 = 24 = 2^3 * 3 is 7-smooth and 23 is prime. - _David A. Corneth_, Apr 19 2021
mx = 2^10; t7 = Select[Sort[Flatten[Table[2^i * 3^j * 5^k * 7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, Log[5, mx]}, {l, 0, Log[7, mx]}]]], # <= mx &]; Union[Select[t7 + 1, PrimeQ], Select[t7 - 1, PrimeQ]] (* T. D. Noe, Nov 26 2012 *) Select[Prime[Range[90]],Max[FactorInteger[#-1][[;;,1]]]<11||Max[FactorInteger[#+1][[;;,1]]]<11&] (* Harvey P. Dale, Nov 03 2024 *)
is7smooth(n) = forprime(p = 2, 7, n /= p^valuation(n, p)); n==1 is(n) = isprime(n) && (is7smooth(n - 1) || is7smooth(n + 1)) \\ David A. Corneth, Apr 19 2021
Comments