A085527 a(n) = (2n+1)^n.
1, 3, 25, 343, 6561, 161051, 4826809, 170859375, 6975757441, 322687697779, 16679880978201, 952809757913927, 59604644775390625, 4052555153018976267, 297558232675799463481, 23465261991844685929951, 1977985201462558877934081, 177482997121587371826171875
Offset: 0
References
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- Karola Mészáros, Labeling the Regions of the Type C_n Shi Arrangement, The Electronic Journal of Combinatorics, vol. 20, no. 2, (2013).
- Zhi-Wei Sun, Fedor Petrov, A surprising identity, MathOverflow, Jan 17 2019.
Programs
-
GAP
List([0..20],n->(2*n+1)^n); # Muniru A Asiru, Dec 05 2018
-
Magma
[(2*n+1)^n: n in [0..20]]; // Wesley Ivan Hurt, Mar 01 2015
-
Maple
A085527:=n->(2*n+1)^n: seq(A085527(n), n=0..20); # Wesley Ivan Hurt, Mar 01 2015
-
Mathematica
Table[(2 n + 1)^n, {n, 0, 20}] (* Wesley Ivan Hurt, Mar 01 2015 *)
-
PARI
a(n)=(2*n+1)^n;
-
Python
def A085527(n): return ((n<<1)|1)**n # Chai Wah Wu, Nov 10 2024
Formula
E.g.f.: sqrt(2)/(2*(1+LambertW(-2*x))*sqrt(-x/LambertW(-2*x))). - Vladeta Jovovic, Oct 16 2004
For r = 0, 1, 2, ..., the e.g.f. for the sequence whose n-th term is (2*n+1)^(n+r) can be expressed in terms of the function U(z) = Sum_{n >= 0} (2*n+1)^(n-1)*z^(2*n+1)/(2^n*n!). See A214406 for details. In the present case, r = 0, and the resulting e.g.f. is 1/z*U(z)/(1 - U(z)^2) taken at z = sqrt(2*x). - Peter Bala, Aug 06 2012
a(n) = [x^n] 1/(1 - (2*n+1)*x). - Ilya Gutkovskiy, Oct 10 2017
a(n) = (-2)^n * D(2*n + 1), where D(n) is the determinant of the n X n matrix M with elements M(j, k) = cos(Pi*j*k/n). See the Zhi-Wei Sun, Petrov link. - Peter Luschny, Sep 19 2021
a(n) ~ exp(1/2) * 2^n * n^n. - Vaclav Kotesovec, Dec 05 2021
Series reversion of (1 - x)^2 * log(1/(1 - x)) begins x + 3*x^2/2! + 25*x^3/3! + 343*x^4/4! + 6561*x^5/5! + .... - Peter Bala, Sep 27 2023
a(n) = Product_{k=1..n} tan(k*Pi/(1+2*n))^(2*n). - Chai Wah Wu, Nov 10 2024
Comments