A085695 a(n) = Fibonacci(n)*Fibonacci(3n)/2.
0, 1, 4, 34, 216, 1525, 10336, 71149, 486864, 3339106, 22881100, 156843721, 1074985344, 7368157369, 50501844796, 346145466850, 2372514562656, 16261461342589, 111457702083424, 763942486626661, 5236139616899400
Offset: 0
Examples
G.f. = x + 4*x^2 + 34*x^3 + 216*x^4 + 1525*x^5 + 10336*x^6 + ... - _Michael Somos_, Apr 23 2022
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1197
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- Index entries for linear recurrences with constant coefficients, signature (4,19,4,-1).
Programs
-
Mathematica
Array[Times @@ MapIndexed[Fibonacci[#]/First@ #2 &, {#, 3 #}] &, 21, 0] (* or *) LinearRecurrence[{4, 19, 4, -1}, {0, 1, 4, 34}, 21] (* or *) CoefficientList[Series[(x - x^3)/(1 - 4 x - 19 x^2 - 4 x^3 + x^4), {x, 0, 20}], x] (* Michael De Vlieger, Dec 17 2017 *)
-
MuPAD
numlib::fibonacci(3*n)*numlib::fibonacci(n)/2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
-
PARI
a(n) = fibonacci(n)*fibonacci(3*n)/2 \\ Andrew Howroyd, Dec 17 2017
Formula
G.f.: ( x - x^3 )/( 1 - 4 x - 19 x^2 - 4 x^3 + x^4 ).
Recurrence: a(n+4) = 4*a(n+3) + 19*a(n+2) + 4*a(n+1) - a(n).
a(n) = a(-n) and A153173(n) = 1 + 10*a(n) for all n in Z. - Michael Somos, Apr 23 2022
Comments