cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085787 Generalized heptagonal numbers: m*(5*m - 3)/2, m = 0, +-1, +-2 +-3, ...

Original entry on oeis.org

0, 1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112, 133, 148, 172, 189, 216, 235, 265, 286, 319, 342, 378, 403, 442, 469, 511, 540, 585, 616, 664, 697, 748, 783, 837, 874, 931, 970, 1030, 1071, 1134, 1177, 1243, 1288, 1357, 1404, 1476, 1525, 1600, 1651, 1729
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Zero together with the partial sums of A080512. - Omar E. Pol, Sep 10 2011
Second heptagonal numbers (A147875) and positive terms of A000566 interleaved. - Omar E. Pol, Aug 04 2012
These numbers appear in a theta function identity. See the Hardy-Wright reference, Theorem 355 on p. 284. See the g.f. of A113429. - Wolfdieter Lang, Oct 28 2016
Characteristic function is A133100. - Michael Somos, Jan 30 2017
40*a(n) + 9 is a square. - Bruno Berselli, Apr 18 2018
Numbers k such that the concatenation k225 is a square. - Bruno Berselli, Nov 07 2018
The sequence terms occur as exponents in the expansion of Sum_{n >= 0} q^(n*(n+1)) * Product_{k >= n+1} 1 - q^k = 1 - q - q^4 + q^7 + q^13 - q^18 - q^27 + + - - ... (see Hardy and Wright, Theorem 363, p. 290). - Peter Bala, Dec 15 2024

Examples

			From the first formula: a(5) = A000217(5) + A000217(2) = 15 + 3 = 18.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Column 3 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), this sequence (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Haskell
    a085787 n = a085787_list !! n
    a085787_list = scanl (+) 0 a080512_list
    -- Reinhard Zumkeller, Apr 06 2015
  • Magma
    [5*n*(n+1)/8-1/16+(-1)^n*(2*n+1)/16: n in [0..60]]; // Vincenzo Librandi, Sep 11 2011
    
  • Mathematica
    Select[Table[(n*(n+1)/2-1)/5,{n,500}],IntegerQ] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2012 *)
  • PARI
    t(n)=n*(n+1)/2
    for(i=0,40,print1(t(i)+t(floor(i/2)), ", "))
    
  • PARI
    {a(n) = (5*(-n\2)^2 - (-n\2)*3*(-1)^n) / 2}; /* Michael Somos, Oct 17 2006 */
    

Formula

a(n) = A000217(n) + A000217(floor(n/2)).
a(2*n-1) = A000566(n).
a(2*n) = A147875(n). - Bruno Berselli, Apr 18 2018
G.f.: x * (1 + 3*x + x^2) / ((1 - x) * (1 - x^2)^2). a(n) = a(-1-n) for all n in Z. - Michael Somos, Oct 17 2006
a(n) = 5*n*(n + 1)/8 - 1/16 + (-1)^n*(2*n + 1)/16. - R. J. Mathar, Jun 29 2009
a(n) = (A000217(n) + A001082(n))/2 = (A001318(n) + A118277(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A002378(n) - A001318(n). - Omar E. Pol, Oct 23 2013
Sum_{n>=1} 1/a(n) = 10/9 + (2*sqrt(1 - 2/sqrt(5))*Pi)/3. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - (1 - 2*x)*sinh(x))/8. - Franck Maminirina Ramaharo, Nov 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5)/3 - 10/9 - 2*sqrt(5)*log(phi)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 28 2022

Extensions

New name from T. D. Noe, Apr 21 2006
Formula in sequence name added by Omar E. Pol, May 28 2012