cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A173623 Decimal expansion of Pi*log(2)/2.

Original entry on oeis.org

1, 0, 8, 8, 7, 9, 3, 0, 4, 5, 1, 5, 1, 8, 0, 1, 0, 6, 5, 2, 5, 0, 3, 4, 4, 4, 4, 9, 1, 1, 8, 8, 0, 6, 9, 7, 3, 6, 6, 9, 2, 9, 1, 8, 5, 0, 1, 8, 4, 6, 4, 3, 1, 4, 7, 1, 6, 2, 8, 9, 7, 6, 2, 6, 5, 9, 7, 1, 5, 4, 2, 7, 4, 5, 8, 8, 3, 7, 0, 9, 9, 3, 2, 1, 5, 1, 6, 4, 4, 8, 0, 8, 0, 5, 3, 3, 1, 5, 1, 2, 5, 2, 8, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Examples

			1.08879304515180106525034444...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.3, p. 22.
  • Paul J. Nahin, Inside Interesting Integrals, Springer 2015, ISBN 978-1493912766.

Crossrefs

Programs

  • Maple
    Pi/2*log(2) ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*Log[2]/2, 10, 100][[1]] (* Amiram Eldar, Jul 13 2020 *)
  • PARI
    Pi*log(2)/2 \\ Stefano Spezia, Oct 21 2024

Formula

Equals abs(Integral_{x=0..Pi/2} log(sin(x)) dx).
Equals A086054 / 2.
From Amiram Eldar, Jul 13 2020: (Start)
Equals Sum_{k>=0} binomial(2*k,k)/(4^k*(2*k+1)^2) = Sum_{k>=0} A000984(k)/A164583(k).
Equals Integral_{x=0..1} arcsin(x)/x dx.
Equals Integral_{x=0..Pi/2} x*cot(x) dx. (End)
Equals Integral_{x = 0..1} log(x + 1/x)/(1 + x^2) dx (Nahin, 2.4.4) = (1/2)*Integral_{x = 0..oo} log(x^2 + 4)/(x^2 + 4) dx = (1/2)*Integral_{x = 0..oo} log(x^2 + 1)/(x^2 + 1) dx = Integral_{x = 0..oo} log(x^2 + 64)/(x^2 + 64) dx. - Peter Bala, Jul 22 2022
Equals 3F2(1/2,1/2,1/2 ; 3/2,3/2 ; 1). - R. J. Mathar, Aug 19 2024

A102886 Decimal expansion of Serret's integral: Integral_{x=0..1} log(x+1)/(x^2+1) dx.

Original entry on oeis.org

2, 7, 2, 1, 9, 8, 2, 6, 1, 2, 8, 7, 9, 5, 0, 2, 6, 6, 3, 1, 2, 5, 8, 6, 1, 1, 2, 2, 7, 9, 7, 0, 1, 7, 4, 3, 4, 1, 7, 3, 2, 2, 9, 6, 2, 5, 4, 6, 1, 6, 0, 7, 8, 6, 7, 9, 0, 7, 2, 4, 4, 0, 6, 6, 4, 9, 2, 8, 8, 5, 6, 8, 6, 4, 7, 0, 9, 2, 7, 4, 8, 3, 0, 3, 7, 9, 1, 1, 2, 0, 2, 0, 1, 3, 3, 2, 8, 7, 8, 1, 3, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jan 15 2005

Keywords

Comments

Named after the French mathematician Joseph-Alfred Serret (1819-1885). - Amiram Eldar, May 30 2021

Examples

			0.27219826128795026631258611227970174341732296254616...
		

References

  • Eric Billault et al, MPSI- Khôlles de Maths, Ellipses, 2012, exercice 11.10, pp. 252-264.
  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (94) on page 18.
  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 4.291.8.

Crossrefs

Cf. A086054 (Pi*log(2)).

Programs

Formula

Equals Integral_{x=0..1} arctan(x)/(x+1) dx. - Jean-François Alcover, Mar 25 2013
Equals Integral_{x=0..Pi/4} log(tan(x)+1) dx [see link J.-A. Serret and reference Billault]. - Bernard Schott, Apr 23 2020
Equals Pi*log(2)/8 = Sum_{n>0} (-1)^(n+1) * H(2n) / (2n+1) = H(2)/3 - H(4)/5 + H(6)/7 -... with H(n) = Sum_{j=1..n} 1/j the harmonic numbers. [Jolley]; improved by Bernard Schott, Apr 24 2020
Equals -Integral_{x=0..1} x*arccos(x)*log(x) dx. - Amiram Eldar, May 30 2021
Equals Integral_{x=0..log(2)} x/(e^x + 2*e^(-x) - 2) dx = -Integral_{x=0..Pi/2} log(sin(x))*sin(x)/sqrt(1+sin(x)^2) dx = Integral_{x=0..1} log((1 - x)/x)/(1 + x^2) dx = Integral_{x=0..Pi/4} x/((cos(x) + sin(x))*cos(x)) dx = Integral_{x=0..Pi/4} log(cot(x) - 1) dx (see Shamos). - Stefano Spezia, Nov 13 2024

A217459 Decimal expansion of 2^Pi.

Original entry on oeis.org

8, 8, 2, 4, 9, 7, 7, 8, 2, 7, 0, 7, 6, 2, 8, 7, 6, 2, 3, 8, 5, 6, 4, 2, 9, 6, 0, 4, 2, 0, 8, 0, 0, 1, 5, 8, 1, 7, 0, 4, 4, 1, 0, 8, 1, 5, 2, 7, 1, 4, 8, 4, 9, 2, 6, 6, 6, 8, 9, 5, 9, 8, 6, 5, 0, 5, 5, 3, 7, 0, 0, 8, 7, 0, 6, 9, 5, 2, 3, 5, 0, 4, 3, 0, 5, 7, 1, 2, 8, 3, 7, 8, 7, 4, 8, 0, 4, 7, 9, 2
Offset: 1

Views

Author

Jani Melik, Oct 03 2012

Keywords

Examples

			8.8249778270762876238564296042080015817044108152714849266....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^Pi, 10, 100][[1]] (* Amiram Eldar, Nov 24 2020 *)
  • Maxima
    fpprec : 100; ev(bfloat(2^(%pi)));  /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    default(realprecision,2000);2^Pi \\ Anders Hellström, Nov 11 2015
  • Sage
    2^(pi).n(digits=100)
    

Formula

Equals exp(A086054). - Amiram Eldar, Nov 24 2020

A352769 Decimal expansion of Pi^2 * log(2).

Original entry on oeis.org

6, 8, 4, 1, 0, 8, 8, 4, 6, 3, 8, 5, 7, 1, 1, 6, 5, 4, 4, 8, 4, 7, 4, 7, 9, 1, 5, 3, 9, 5, 4, 0, 9, 6, 0, 7, 1, 2, 9, 9, 7, 7, 9, 0, 4, 8, 1, 8, 7, 9, 1, 3, 5, 1, 5, 3, 2, 4, 1, 3, 1, 8, 4, 8, 5, 1, 7, 1, 1, 7, 2, 3, 8, 9, 2, 2, 7, 6, 8, 7, 2, 6, 7, 0, 5, 9, 5, 0, 1, 0, 5, 8, 8, 5, 1, 9, 3, 3, 8, 1, 7, 3, 7, 4, 5
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2022

Keywords

Comments

Rainer and Serene (1976) used the sum that is given in the first formula in the calculation of the free energy of superfluid Helium-3. They evaluated the sum by 6.8.
Rainwater (1978) found the integral representation of this sum, which is given in the second formula, and evaluated it by 6.84109 +- 0.00001.
Glasser and Ruehr (1981) proved the sum is equal to this constant.

Examples

			6.84108846385711654484747915395409607129977904818791...
		

References

  • Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, Philadelphia, 1987, pp. 187-188.

Crossrefs

Cf. A000796 (Pi), A002162 (log(2)), A002117 (zeta(3)), A002388 (Pi^2), A086054 (Pi*log(2)).

Programs

  • Mathematica
    RealDigits[Pi^2*Log[2], 10, 100][[1]]
  • PARI
    Pi^2 * log(2) \\ Michel Marcus, Apr 02 2022

Formula

Equals Sum_{i,j,k, positive and negative odd integers} sign(i) * sign(j) * sign(k) * sign(i+j-k)/(i^2*j^2).
Equals -8 * Integral_{x=0..1} arctanh(x)*log(x)/(x*(1-x^2)) dx - 7*zeta(3)/2.
Equals Integral_{x=0..Pi/2} (4*x^2*cos(x) - x*(Pi-x))/sin(x) dx (Bierens de Haan, 1867; Lindman, 1891).

A188141 Decimal expansion of integral ((arctan(1/x))^3,x=0..infinity).

Original entry on oeis.org

1, 9, 7, 5, 4, 1, 6, 9, 7, 7, 0, 9, 8, 9, 0, 2, 4, 0, 9, 4, 6, 1, 2, 9, 6, 6, 9, 1, 4, 9, 8, 0, 1, 5, 8, 2, 7, 7, 1, 6, 7, 4, 5, 2, 6, 8, 7, 4, 7, 1, 2, 5, 5, 7, 1, 7, 8, 8, 3, 8, 6, 0, 5, 3, 6, 1, 5, 5, 1, 2, 6, 3, 9, 0, 0, 3, 0, 0, 4, 6, 8, 3, 2, 9, 0, 0, 1, 5, 9, 1, 1, 1, 8, 9, 3, 8, 9, 9, 8, 3, 6, 6, 9, 3, 2, 1, 2, 2, 0, 9
Offset: 1

Views

Author

Jean-François Alcover, Mar 23 2011

Keywords

Comments

The computation of this integral was mentioned as a challenge by Robert Israel on the newsgroup sci.math (Dec 22 2010), a closed form solution being given by Valeri Astanoff.

Examples

			1.9754169..
		

Crossrefs

Cf. A086054 (int(arctan(1/x)^2, x=0..infinity)).

Programs

  • Mathematica
    RealDigits[N[(3/8)*(Pi^2*Log[4] - 7*Zeta[3]) , 110]][[1]]
    (* or as a numerical check : *)
    RealDigits[NIntegrate[ArcTan[1/x]^3, {x, 0, Infinity}, WorkingPrecision -> 110]][[1]] (* Jean-François Alcover, Mar 23 2011 *)
    RealDigits[ N[ Integrate[ ArcTan[1/x]^3, {x, 0, Infinity}], 110]][[1]] (* Jean-François Alcover, Oct 19 2012, since version 6.0 *)

A175638 Decimal expansion of the upper limit x such that Integral_{u=0..Pi*x} u*cot(u) du = 0.

Original entry on oeis.org

7, 9, 1, 2, 2, 6, 5, 7, 1, 0, 4, 7, 6, 6, 6, 2, 4, 3, 4, 3, 5, 6, 9, 7, 3, 1, 7, 6, 8, 0, 1, 1, 6, 7, 7, 1, 0, 7, 8, 6, 4, 6, 1, 5, 5, 3, 3, 7, 8, 5, 4, 0, 7, 3, 0, 7, 5, 0, 5, 2, 4, 5, 3, 9, 4, 3, 1, 7, 2, 1, 3, 6, 7, 6, 6, 3, 9, 0, 8, 9, 9, 6, 3, 5, 6, 1, 0, 9, 7, 4, 2, 8, 6, 1, 6, 1, 3, 6, 3, 8, 5, 4, 4, 5, 0
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Because the integral from u=0 up to u=Pi/2 equals log(2)*Pi/2 = A086054/2, this is also the x such that Integral_{u=Pi/2..Pi*x} u*cot(u) du = -log(2)*Pi/2. By partial integration, Integral_{u} u*cot(u) du = u*log(sin(u)) - Integral_{u} log(sin(u)) du, used with a Newton method in the Maple implementation.

Examples

			x = 0.7912265710...
		

Programs

  • Maple
    intu := proc(u) u*log(sin(u)) - int( log(sin(t)),t=Pi/2..u) ; evalf(%) ; end proc:
    Digits := 80 : x := 0.79122 :
    for it from 1 to 10 do x0 := intu(evalf(Pi*x))+Pi*log(2)/2 ; xnew := x-evalf(x0)/Pi^2/x/cot(Pi*x) ; x := evalf(xnew) ; print(x) ; end do:
  • Mathematica
    First@ RealDigits@ Re[ FindRoot[ Integrate[ u*Cot[u], {u, 0, x*Pi}], {x, 0.7}, WorkingPrecision -> 2^7][[1, 2]]] (* Robert G. Wilson v, Aug 03 2010 *)

Extensions

More terms from Robert G. Wilson v, Aug 03 2010

A271872 Decimal expansion of the doubly infinite sum N_3 = Sum_{i,j,k = -inf..inf} (-1)^(i+j+k)/(i^2+j^2+k^2), a lattice constant analog of Madelung's constant (negated).

Original entry on oeis.org

2, 5, 1, 9, 3, 5, 6, 1, 5, 2, 0, 8, 9, 4, 4, 5, 3, 1, 3, 3, 4, 2, 7, 1, 1, 7, 2, 7, 3, 2, 9, 4, 3, 7, 9, 1, 2, 1, 1, 6, 4, 9, 9, 1, 3, 6, 7, 5, 1, 7, 3, 2, 5, 7, 7, 5, 0, 0, 6, 6, 0, 7, 8, 5, 6, 7, 7, 4, 3, 9, 0, 1, 2, 6, 9, 1, 8, 7, 2, 7, 7, 4, 0, 9, 6, 4, 2, 8, 0, 2, 1, 0, 1, 6, 2, 3, 7, 3, 0, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 24 2016

Keywords

Examples

			-2.51935615208944531334271172732943791211649913675173257750066...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.10 Madelung's constant, p. 77.

Crossrefs

Cf. A088537 (M_2), A085469 (M_3), A090734 (M_4), A086054 (N_2).

Programs

  • Mathematica
    digits = 101; Clear[s]; s[max_] := s[max] = NSum[(-1)^n Csch[Pi *Sqrt[m^2 + 2 n^2]]/Sqrt[m^2 + 2 n^2], {m, 1, max}, {n, 1, max}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; s[10]; s[max = 20]; Print[max]; While[RealDigits[s[max], 10, digits + 5][[1]] != RealDigits[s[max/2], 10, digits + 5][[1]], max = max*2; Print[max]]; N3 = Pi^2/3 - Pi*Log[2] - Pi/Sqrt[2] Log[2 (Sqrt[2] + 1)] + 8 Pi*s[max]; RealDigits[N3, 10, digits][[1]]

Formula

N_3 = Pi^2/3-Pi*log(2)-(Pi/sqrt(2))*log(2(sqrt(2)+1))+8 Pi*Sum_{m,n >= 1} (-1)^n csch(Pi*sqrt(m^2+2n^2))/sqrt(m^2+2n^2).

A348563 Decimal expansion of Sum_{k>=1} H(k) * binomial(2*k,k)/((2*k+1)*4^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

1, 4, 8, 6, 2, 7, 6, 2, 8, 6, 4, 0, 5, 2, 7, 3, 9, 2, 9, 7, 1, 7, 7, 2, 5, 1, 6, 1, 4, 9, 1, 9, 2, 2, 4, 9, 5, 7, 5, 8, 0, 1, 3, 7, 9, 6, 7, 5, 7, 4, 0, 2, 2, 4, 2, 7, 4, 0, 1, 9, 7, 2, 2, 5, 2, 9, 2, 7, 4, 3, 5, 2, 9, 9, 2, 8, 2, 7, 7, 0, 9, 1, 4, 8, 7, 0, 9, 7, 0, 9, 0, 0, 9, 3, 7, 9, 7, 3, 9, 9, 9, 3, 6, 6, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2021

Keywords

Examples

			1.48627628640527392971772516149192249575801379675740...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4*Catalan - Pi*Log[2], 10, 100][[1]]

Formula

Equals 4*G - Pi*log(2), where G is Catalan's constant (A006752).
Equals Integral_{-Pi/2 .. Pi/2} log(1+cos(x)) dx. - Philippe Deléham , Jan 12 2024
Equals Integral_{x=0..1} log(1 + sqrt(x))/sqrt(x - x^2) dx. - Kritsada Moomuang, Jun 06 2025

A372919 Decimal expansion of (Pi/4)*log(2) + Catalan.

Original entry on oeis.org

1, 4, 6, 0, 3, 6, 2, 1, 1, 6, 7, 5, 3, 1, 1, 9, 5, 4, 7, 6, 7, 9, 7, 7, 5, 7, 3, 9, 4, 9, 1, 7, 8, 7, 5, 9, 7, 6, 0, 8, 7, 9, 5, 2, 9, 9, 3, 7, 3, 9, 9, 3, 7, 0, 7, 8, 4, 7, 9, 4, 6, 9, 3, 2, 9, 2, 0, 3, 4, 0, 1, 5, 7, 0, 7, 0, 4, 4, 0, 2, 6, 6, 0, 8, 6, 9, 3, 8, 7, 5, 3, 3, 2, 8, 7
Offset: 1

Views

Author

R. J. Mathar, May 16 2024

Keywords

Examples

			1.46036211...
		

Crossrefs

Programs

  • Maple
    Pi/4*log(2)+Catalan ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*Log[2]/4 + Catalan, 10, 120][[1]] (* Amiram Eldar, May 21 2024 *)

Formula

Equals Integral_{x=0..oo} log(x+1)/(x^2+1) dx = A086054/4 + A006752.
From Amiram Eldar, May 21 2024: (Start)
Formulas from Shamos (2011):
Equals Integral_{x>=1} log(x^2-1)/(x^2+1) dx.
Equals Integral_{x>=0} x/(exp(x) + 2*exp(-x) - 2) dx.
Equals Integral_{x=0..Pi/2} (sin(x)-cos(x))/(sin(x)+cos(x)) * x dx.
Equals Integral_{x>=0} arccot(x)/(x+1) dx.
Equals Integral_{x=0..Pi/2} log(1+tan(x)) dx. (End)
Equals Integral_{x=0..oo} arctan(x)/(x*(1 + x)) dx. - Kritsada Moomuang, Jun 18 2025
Showing 1-9 of 9 results.