cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A083345 Numerator of r(n) = Sum(e/p: n=Product(p^e)); a(n) = n' / gcd(n,n'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 4, 1, 9, 8, 2, 1, 7, 1, 6, 10, 13, 1, 11, 2, 15, 1, 8, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 12, 13, 25, 1, 7, 2, 9, 20, 14, 1, 3, 16, 23, 22, 31, 1, 23, 1, 33, 17, 3, 18, 61, 1, 18, 26, 59, 1, 13, 1, 39, 11, 20, 18, 71, 1, 11, 4, 43, 1, 31, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Least common multiple of n and its arithmetic derivative, divided by n, i.e. a(n) = lcm(n,n')/n = A086130(n)/A000027(n). - Giorgio Balzarotti, Apr 14 2011
From Antti Karttunen, Nov 12 2024: (Start)
Positions of multiples of any natural number in this sequence (like A369002, A369644, A369005, or A369007) form always a multiplicative semigroup: if m and n are in that sequence, then so is m*n.
Proof: a(x) = x' / gcd(x,x') = A003415(x) / A085731(x) by definition. Let v_p(x) be the p-adic valuation of x, with p prime. Let e = v_p(c), the p-adic valuation of natural number c whose multiples we are searching for. For v_p(a(x)) >= e > 0 and v_p(a(y)) >= e > 0 to hold we must have v_p(x') = v_p(x)+h and v_p(y') = v_p(y)+k, for some h >= e, k >= e for p^e to divide a(x) and a(y).
Then, as a(xy) = (xy)' / gcd(xy,(xy)') = (x'y + y'x) / gcd(xy, (x'y + y'x)), we have, for the top side, v_p((xy)') = min(v_p(x')+v_p(y), v_p(y')+v_p(x)) = min(v_p(x) + h + v_p(y), v_p(y) + k + v_p(x)) = v_p(xy) + min(h,k), and for the bottom side we get v_p(gcd(xy, (x'y + y'x))) = min(v_p(xy), v_p(xy) + min(h,k)) = v_p(xy), so v_p(a(xy)) = min(h,k) >= e, thus p^e | a(xy). For a composite c that is not a prime power, c | a(xy) holds if the above equations hold for all p^e || c.
(End)

Examples

			Fractions begin with 0, 1/2, 1/3, 1, 1/5, 5/6, 1/7, 3/2, 2/3, 7/10, 1/11, 4/3, ...
For n = 12, 2*2*3 = 2^2 * 3^1 --> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12) = 4, A083346(12) = 3.
For n = 18, 2*3*3 = 2^1 * 3^2 --> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18) = 7, A083346(18) = 6.
		

Crossrefs

Cf. A369001 (anti-parity), A377874 (parity).
Cf. A369002 (positions of even terms), A369003 (of odd terms), A369644 (of multiples of 3), A369005 (of multiples of 4), A373265 (of terms of the form 4m+2), A369007 (of multiples of 27), A369008, A369068 (Möbius transform), A369069.

Programs

  • Mathematica
    Array[Numerator@ Total[FactorInteger[#] /. {p_, e_} /; e > 0 :> e/p] - Boole[# == 1] &, 85] (* Michael De Vlieger, Feb 25 2018 *)
  • PARI
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Feb 25 2018

Formula

The fraction a(n)/A083346(n) is totally additive with a(p) = 1/p. - Franklin T. Adams-Watters, May 17 2006
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A083346(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Sep 29 2023
a(n) = A003415(n) / A085731(n) = A342001(n) / A369008(n). - Antti Karttunen, Jan 16 2024

Extensions

Secondary definition added by Antti Karttunen, Nov 12 2024

A085731 Greatest common divisor of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 64, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

a(n) = 1 iff n is squarefree (A005117), cf. A068328.
This sequence is very probably multiplicative. - Mitch Harris, Apr 19 2005

Crossrefs

Programs

  • Haskell
    a085731 n = gcd n $ a003415 n -- Reinhard Zumkeller, May 10 2011
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := GCD[n, d[n]]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Feb 21 2014 *)
    f[p_, e_] := p^If[Divisible[e, p], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} \\ Michel Marcus, Feb 14 2016

Formula

a(n) = GCD(n, A003415(n)).
Multiplicative with a(p^e) = p^e if p divides e; a(p^e) = p^(e-1) otherwise. - Eric M. Schmidt, Oct 22 2013
From Antti Karttunen, Feb 28 2021: (Start)
Thus a(A276086(n)) = A328572(n), by the above formula and the fact that A276086 is a permutation of A048103.
a(n) = n / A083346(n) = A190116(n) / A086130(n). (End)

A190116 a(n) = n*n', where n' is the arithmetic derivative (A003415) of n.

Original entry on oeis.org

0, 2, 3, 16, 5, 30, 7, 96, 54, 70, 11, 192, 13, 126, 120, 512, 17, 378, 19, 480, 210, 286, 23, 1056, 250, 390, 729, 896, 29, 930, 31, 2560, 462, 646, 420, 2160, 37, 798, 624, 2720, 41, 1722, 43, 2112, 1755, 1150, 47, 5376, 686, 2250
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

Sequence is not injective. 4153248 is the smallest number that occurs more than once, as a(1368) and as a(2277). See example in A327861. - Antti Karttunen, Sep 29 2019

Examples

			For n=4, 4'= 4, 4*4' = 16, so a(4)=16.
		

Crossrefs

Cf. A003415, A327861 (number of times n occurs in this sequence).

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(der(n)*n,n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[n*A003415[n], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    a(n) = n*sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); \\ Michel Marcus, Dec 30 2017

Formula

a(n) = A085731(n) * A086130(n). - Michel Marcus, Oct 24 2013

A189100 a(n) = lcm(n!,n!')/gcd(n!,n!'), where n!' is the arithmetic derivative of n! (A068311).

Original entry on oeis.org

0, 2, 30, 66, 1830, 645, 33180, 198870, 228270, 64785, 7960260, 9738960, 1663226565, 7232635410, 857066210, 1057466410, 307311194190, 767464487790, 278292627277665, 306517823106495, 35302033071305, 147385363695570, 78207294248313230, 198777858520921680
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Comments

Least common multiple of n! and its arithmetic derivative divided by greatest common divisor of n! and its arithmetic derivative.

Examples

			n = 5: 5! = 120, 120' = 244, gcd(120,244) = 4, lcm(120,244) = 7320, 7320/4 = 1830 -> a(5) = 1830.
		

Crossrefs

Formula

a(n) = lcm(n!,n!')/gcd(n!,n!') = A086130(n!)/A085731(n!) = lcm(A000142(n),A068311(n))/gcd(A000142(n),A068311(n))

A189102 Greatest common divisor of n! and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 4, 48, 48, 192, 1728, 34560, 34560, 414720, 414720, 2903040, 130636800, 2090188800, 2090188800, 25082265600, 25082265600, 501645312000, 31603654656000, 347640201216000, 347640201216000, 5562243219456000, 139056080486400000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, gcd(120,244) = 4 -> a(5) = 4
		

Crossrefs

Formula

a(n) = gcd(n!,n!') = gcd(A000142(n),A068311(n)).

A189036 a(n)= lcm(n,n')/gcd(n,n'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 2, 3, 1, 5, 30, 7, 6, 6, 70, 11, 12, 13, 126, 120, 2, 17, 42, 19, 30, 210, 286, 23, 66, 10, 390, 1, 56, 29, 930, 31, 10, 462, 646, 420, 15, 37, 798, 624, 170, 41, 1722, 43, 132, 195, 1150, 47, 21, 14, 90, 1020, 182, 53, 6, 880, 322, 1254, 1798, 59, 345, 61, 2046, 357, 3, 1170, 4026, 67, 306, 1794, 4130, 71, 78, 73, 2886, 165, 380, 1386, 5538, 79, 55, 12, 3526, 83, 651, 1870, 3870, 2784, 770, 89, 1230, 1820, 552, 3162, 4606, 2280, 102, 97, 154, 825, 35
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 15 2011

Keywords

Comments

Least common multiple of n and its arithmetic derivative divided by greatest common divisor of n and its arithmetic derivative.

Examples

			n = 8, n'= 12,  lcm(8,12)= 24, gcd(8,12)= 4, hence a(8)=24/4 = 6.
		

Crossrefs

Formula

a(n) = lcm(n,n')/gcd(n,n') = A086130(n)/A085731(n).

A189103 Least common multiple of n! and its arithmetic derivative.

Original entry on oeis.org

0, 2, 30, 264, 7320, 30960, 1592640, 38183040, 394450560, 2238969600, 275106585600, 4038941491200, 689773321036800, 20996629900646400, 111964387062528000, 2210304446558208000, 642338416210563072000, 19249748121316737024000, 6980209591900198477824000
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Examples

			n = 5: 5! = 120, 120' = 244, lcm(120,244) = 7320 -> a(5) = 7320
		

Crossrefs

Formula

a(n) = lcm(n!,n!') = lcm(A000142(n),A068311(n)).

A188901 Integers in the sequences (arithmetic derivative of k) divided by k.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 3, 2, 5, 4, 3, 1, 6, 5, 4, 2, 7, 3, 6, 5, 3, 8, 4, 2, 7, 6, 4, 9, 5, 3, 8, 4, 7, 5, 1, 10, 6, 4, 9, 5, 3, 8, 6, 2, 11, 7, 5, 10, 6, 4, 2, 9, 7, 3, 5, 12, 8, 6, 2, 11, 7, 5, 3, 10, 8, 4, 6, 4, 13, 9, 7, 3, 12, 8, 6, 4, 11
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 16 2011

Keywords

Comments

Integers in the sequence (k'/k) = A003415(k)/k. See A072873 for the values of k where k'/k is an integer.

Examples

			1' = 0, 0/1 = 0 -> a(1) = 0;
4' = 4 ,4/4 = 1 -> a(2) = 1;
16' = 32, 32/16 = 2 -> a(3) = 2.
		

Crossrefs

Showing 1-8 of 8 results.