cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A194455 a(n) = 2^n + 3n + 1.

Original entry on oeis.org

2, 6, 11, 18, 29, 48, 83, 150, 281, 540, 1055, 2082, 4133, 8232, 16427, 32814, 65585, 131124, 262199, 524346, 1048637, 2097216, 4194371, 8388678, 16777289, 33554508, 67108943, 134217810, 268435541, 536871000, 1073741915, 2147483742, 4294967393, 8589934692, 17179869287
Offset: 0

Views

Author

Bruno Berselli, Sep 01 2011

Keywords

Comments

Inverse binomial transform of this sequence: 2,4,1,1 (1 continued).

Crossrefs

Cf. A062709 (first differences), A000079 (second and successive differences).
Cf. A146529 (differences between alternate terms, for n>2).

Programs

  • Magma
    [2^n+3*n+1: n in [0..31]];
    
  • Mathematica
    Table[2^n + 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{4,-5,2},{2,6,11},40] (* Harvey P. Dale, Oct 01 2014 *)
  • PARI
    for(n=0, 31, print1(2^n+3*n+1", "));

Formula

G.f.: (2 - 2*x - 3*x^2)/((1 - 2*x)*(1 - x)^2).
a(n) = A086653(n) - 1 for n > 0.
Sum_{i=0..n} a(i) = A115067(n+1) + 2^(n+1).
a(n) = 3*a(n-1) - 2*a(n-2) - 3 for n > 1.
a(n)^2 = 2^(n+1)*(a(n-1) + 3) + (3*n + 1)^2 for n > 2.
E.g.f.: exp(x)*(1 + exp(x) + 3*x). - Stefano Spezia, May 06 2023

A093988 Numbers k such that 2^k + 3*k is prime.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 35, 45, 47, 57, 87, 183, 325, 367, 447, 809, 1157, 2789, 5775, 14829, 20687, 46463, 62491, 92147, 128745
Offset: 1

Views

Author

Robert G. Wilson v, May 25 2004

Keywords

Comments

a(22) > 31410. - Jinyuan Wang, Feb 03 2020

Crossrefs

Programs

  • Maple
    A093988:=n->`if`(isprime(2^n+3*n), n, NULL): seq(A093988(n), n=1..10^3); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    Do[ If[ PrimeQ[2^n + 3n], Print[n]], {n, 1, 5000, 2}]
  • PARI
    isok(n) = isprime(2^n + 3*n); \\ Michel Marcus, Jan 21 2017
    
  • PFGW
    ABC2 2^$a+3*$a
    a: from 1 to 1000 // Jinyuan Wang, Feb 03 2020

Extensions

a(19)-a(21) from Ryan Propper, Jul 05 2005
a(22)-a(23) from Michael S. Branicky, May 19 2023
a(24)-a(25) from Michael S. Branicky, Jul 24 2024

A140800 Total number of vertices in all finite n-dimensional convex regular polytopes, or 0 if the number is infinite.

Original entry on oeis.org

1, 2, 0, 50, 773, 48, 83, 150, 281, 540, 1055, 2082, 4133, 8232, 16427, 32814, 65585, 131124, 262199, 524346, 1048637, 2097216, 4194371, 8388678, 16777289, 33554508, 67108943, 134217810, 268435541, 536871000, 1073741915, 2147483742
Offset: 0

Views

Author

Jonathan Vos Post, Jul 15 2008

Keywords

Comments

Andrew Weimholt suggests a related sequence, namely "total number of vertices in all finite n-dimensional regular polytopes, or 0 if the number is infinite, includes both convex and non-convex, beginning: 1, 2, 0, 106, 2453, 48, 83, 150, 281, 540, ... and writes that the sequence of just the non-convex cases (0, 0, -1, 56, 1680, 0, 0, 0, ..., where "-1" indicates infinity as zero is otherwise employed) is not as interesting, since it's all zeros from a(5) on.

Examples

			a(0) = 1 because the 0-D regular polytope is the point.
a(1) = 2 because the only regular 1-D polytope is the line segment, with 2 vertices, one at each end.
a(2) = 0, indicating infinity, because the regular k-gon has k vertices.
a(3) = 50 (4 for the tetrahedron, 6 for the octahedron, 8 for the cube, 12 for the icosahedron, 20 for the dodecahedron) = the sum of A053016.
a(4) = 773 = 5 + 8 + 16 + 24 + 120 + 600 = sum of A063924.
For n>4 there are only the three regular n-dimensional polytopes, the simplex with n+1 vertices, the hypercube with 2^n vertices and the hyperoctahedron = cross polytope = orthoplex with 2*n vertices, for a total of A086653(n) + 1 = 2^n + 3*n + 1 (again restricted to n > 4).
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973.
  • Branko Grunbaum, Convex Polytopes, second edition (first edition (1967) written with the cooperation of V. L. Klee, M. Perles and G. C. Shephard; second edition (2003) prepared by V. Kaibel, V. L. Klee and G. M. Ziegler), Graduate Texts in Mathematics, Vol. 221, Springer 2003.
  • P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, Vol. 92, Cambridge University Press, Cambridge, 2002.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 2}, {1, 2, 0, 50, 773, 48, 83, 150}, 32] (* Georg Fischer, May 03 2019 *)

Formula

For n > 4, a(n) = A086653(n) + 1 = 2^n + 3*n + 1.
G.f.: -(1488*x^7 - 3656*x^6 + 2794*x^5 - 569*x^4 - 58*x^3 + 3*x^2 + 2*x - 1)/((1-x)^2*(1-2*x)). [Colin Barker, Sep 05 2012]

Extensions

a(14)-a(15) corrected by Georg Fischer, May 02 2019
Showing 1-3 of 3 results.