A108796
Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.
Original entry on oeis.org
1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
Offset: 0
Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From _Gus Wiseman_, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
((6),(5,1))
((6),(4,2))
((6),(3,2,1))
((5,1),(4,2))
(End)
Main diagonal of
A284593 times (1/2).
This is the strict case of
A260669.
-
using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* Gus Wiseman, Oct 07 2023 *)
-
a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023
A355389
Number of unordered pairs of distinct integer partitions of n.
Original entry on oeis.org
0, 0, 1, 3, 10, 21, 55, 105, 231, 435, 861, 1540, 2926, 5050, 9045, 15400, 26565, 43956, 73920, 119805, 196251, 313236, 501501, 786885, 1239525, 1915903, 2965830, 4528545, 6909903, 10417330, 15699606, 23403061, 34848726, 51435153, 75761895, 110744403, 161577276
Offset: 0
The a(0) = 0 through a(4) = 10 pairs:
. . (2)(11) (3)(21) (4)(22)
(3)(111) (4)(31)
(21)(111) (22)(31)
(4)(211)
(22)(211)
(31)(211)
(4)(1111)
(22)(1111)
(31)(1111)
(211)(1111)
The version for compositions is
A006516.
Without distinctness we get
A086737.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
-
a:= n-> binomial(combinat[numbpart](n),2):
seq(a(n), n=0..36); # Alois P. Heinz, Feb 07 2024
-
Table[Binomial[PartitionsP[n],2],{n,0,6}]
-
a(n) = binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022
A366317
Number of unordered pairs of strict integer partitions of n.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 10, 15, 21, 36, 55, 78, 120, 171, 253, 378, 528, 741, 1081, 1485, 2080, 2926, 4005, 5460, 7503, 10153, 13695, 18528, 24753, 32896, 43956, 57970, 76245, 100576, 131328, 171405, 223446, 289180, 373680, 482653, 619941, 794430, 1017451, 1296855
Offset: 0
The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
{1,1} {2,2} {3,3} {4,4} {5,5} {6,6} {7,7}
{3,21} {4,31} {5,32} {6,42} {7,43}
{21,21} {31,31} {5,41} {6,51} {7,52}
{32,32} {42,42} {7,61}
{32,41} {42,51} {43,43}
{41,41} {51,51} {43,52}
{6,321} {43,61}
{42,321} {52,52}
{51,321} {52,61}
{321,321} {61,61}
{7,421}
{43,421}
{52,421}
{61,421}
{421,421}
For non-strict partitions we have
A086737.
The ordered disjoint case is
A365662.
Excluding constant pairs gives
A366132.
A002219 and
A237258 count partitions of 2n including a partition of n.
-
Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]
A370207
Number T(n,k) of unordered pairs of partitions of n with exactly k common parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 6, 4, 3, 1, 1, 8, 10, 5, 3, 1, 1, 24, 18, 13, 6, 3, 1, 1, 30, 42, 23, 14, 6, 3, 1, 1, 74, 72, 55, 26, 15, 6, 3, 1, 1, 110, 146, 95, 61, 27, 15, 6, 3, 1, 1, 219, 256, 201, 109, 64, 28, 15, 6, 3, 1, 1, 309, 475, 351, 227, 115, 65, 28, 15, 6, 3, 1, 1
Offset: 0
T(4,0) = 6: (1111,22), (1111,4), (211,4), (22,31), (22,4), (31,4).
T(4,1) = 4: (1111,31), (211,22), (211,31), (4,4).
T(4,2) = 3: (1111,211), (22,22), (31,31).
T(4,3) = 1: (211,211).
T(4,4) = 1: (1111,1111).
Triangle T(n,k) begins:
1;
0, 1;
1, 1, 1;
2, 2, 1, 1;
6, 4, 3, 1, 1;
8, 10, 5, 3, 1, 1;
24, 18, 13, 6, 3, 1, 1;
30, 42, 23, 14, 6, 3, 1, 1;
74, 72, 55, 26, 15, 6, 3, 1, 1;
110, 146, 95, 61, 27, 15, 6, 3, 1, 1;
219, 256, 201, 109, 64, 28, 15, 6, 3, 1, 1;
...
-
b:= proc(n, m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
add(add(expand(b(sort([n-i*j, m-i*h])[], i-1)*
x^min(j, h)), h=0..m/i), j=0..n/i)))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(expand(g(n-i*j, i-1)*x^j), j=0..n/i)))
end:
T:= (n, k)-> (coeff(b(n$3), x, k)+coeff(g(n$2), x, k))/2:
seq(seq(T(n, k), k=0..n), n=0..12);
A355390
Number of ordered pairs of distinct integer partitions of n.
Original entry on oeis.org
0, 0, 2, 6, 20, 42, 110, 210, 462, 870, 1722, 3080, 5852, 10100, 18090, 30800, 53130, 87912, 147840, 239610, 392502, 626472, 1003002, 1573770, 2479050, 3831806, 5931660, 9057090, 13819806, 20834660, 31399212, 46806122, 69697452, 102870306, 151523790, 221488806
Offset: 0
The a(0) = 0 through a(3) = 6 pairs:
. . (11)(2) (21)(3)
(2)(11) (3)(21)
(111)(3)
(3)(111)
(111)(21)
(21)(111)
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
-
Table[Length[Select[Tuples[IntegerPartitions[n],2],UnsameQ@@#&]],{n,0,15}]
-
a(n) = 2*binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022
Showing 1-5 of 5 results.
Comments