A087455 Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x.
1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951
Offset: 0
Examples
G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...
References
- Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
- S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).
Links
- Robert Israel, Table of n, a(n) for n = 0..3500
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (2,-3).
- Index entries for sequences related to Benford's law
Programs
-
Magma
[n le 2 select 1 else 2*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 03 2024
-
Maple
Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2)))))); # alternative: a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2),a(0)=1,a(1)=1},a(n),remember): map(a, [$0..100]); # Robert Israel, Jun 23 2015
-
Mathematica
CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Apr 01 2014 *) a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *) LinearRecurrence[{2,-3},{1,1},50] (* Harvey P. Dale, Jul 30 2019 *)
-
PARI
{a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */
-
PARI
{a(n) = real( subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n)}; /* Michael Somos, Jul 26 2006 */
-
PARI
a(n)=simplify(polchebyshev(n,,quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013
-
SageMath
[sqrt(3)^n*chebyshev_T(n, 1/sqrt(3)) for n in range(41)] # G. C. Greubel, Jan 03 2024
Formula
a(n) = (3^(n/2))*cos(n*arctan(sqrt(2))). - Paul Barry, Oct 23 2003
From Paul Barry, Sep 03 2004: (Start)
a(n) = 2*a(n-1) - 3*a(n-2).
a(n) = (-1)^n*Sum_{m=0..n} binomial(n, m)*Sum_{k=0..n} binomial(m, 2k)2^(m-k).
Binomial transform of 1/(1 + 2*x^2), or (1, 0, -2, 0, 4, 0, -8, 0, 16, ...). (End)
a(n+1) = a(n+2) - 2*A088137(n+1), a(n+1) = A088137(n+2) - A088137(n+1). - Creighton Dement, Oct 28 2004
a(n) = upper left and lower right terms of [1,-2, 1,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-2)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-3)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = a(-n) * 3^n for all n in Z. - Michael Somos, Aug 25 2014
E.g.f.: (1/2)*(exp((1 - i*sqrt(2))*x) + exp((1 + i*sqrt(2))*x)), where i is the imaginary unit. - Stefano Spezia, Jul 17 2019
Extensions
The explicit formula was given by Paul Barry.
Corrected and extended by N. J. A. Sloane, Aug 01 2004
More terms from Creighton Dement, Jul 31 2004
Comments