cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A089492 Sequence of primes 2*p(k) + 3 such that 2*p(k) + 3, 2*p(k+1) + 3, 2*p(k+2) + 3, 2*p(k+3) + 3 are consecutive primes, where p(i) denotes the i-th prime.

Original entry on oeis.org

1552237, 4315469, 8774137, 9629197, 10048081, 10875149, 11469389, 14498741, 18280861, 18789629, 19309957, 19309981, 25386029, 27265457, 28398641, 29697029, 31298269, 31355297, 36792901, 47318969, 47487889, 55449689
Offset: 1

Views

Author

Ray Chandler, Nov 04 2003

Keywords

Examples

			p(62178)=776117, 2*776117 + 3 = 1552237 = p(117814);
p(62179)=776119, 2*776119 + 3 = 1552241 = p(117815);
p(62180)=776137, 2*776137 + 3 = 1552277 = p(117816);
p(62181)=776143, 2*776143 + 3 = 1552289 = p(117817).
		

Crossrefs

Subsequence of A089450.

Programs

  • PARI
    a089492(limit)={my(pv=[2,3,5,0],v3=[3,3,3,3],ks(k)=2*k+3);forprime(p=7,limit,pv[4]=p;if(vecsum(isprime(2*pv+v3))==4&&primepi(ks(pv[4]))-primepi(ks(pv[1]))==3,print1(ks(pv[1]),", "));pv[1]=pv[2];pv[2]=pv[3];pv[3]=pv[4])};
    a089492(30000000) \\ Hugo Pfoertner, Aug 06 2021

Formula

a(n) = 2*A089007(n) + 3 = 2*A000040(A089009(n)) + 3 = A000040(A089524(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A089007 Sequence of primes p(n) such that 2*p(n)+3, 2*p(n+1)+3, 2*p(n+2)+3, 2*p(n+3)+3 are four consecutive primes, where p(i) denotes the i-th prime.

Original entry on oeis.org

776117, 2157733, 4387067, 4814597, 5024039, 5437573, 5734693, 7249369, 9140429, 9394813, 9654977, 9654989, 12693013, 13632727, 14199319, 14848513, 15649133, 15677647, 18396449, 23659483, 23743943, 27724843, 28224293, 28677529
Offset: 1

Views

Author

Pierre CAMI, Nov 03 2003

Keywords

Examples

			776117 is in the sequence because it is the 62178th prime, followed by the primes 776119, 776137 and 776143; and 2*776117+3 = 1552237, 2*776119+3 = 1552241, 2*776137+3 = 1552277 and 2*776143+3 = 1552289 which are the 117814th, 117815th, 117816th and 117817th prime respectively.
		

Crossrefs

Subsequence of A088119.
For values of n see A089009: a(n) = A000040(A089009(n)).

Programs

  • Mathematica
    lst = {}; Do[ If[ PrimeQ[2Prime[n] + 3], If[ PrimeQ[2Prime[n + 1] + 3], If[ PrimeQ[2Prime[n + 2] + 3], If[ PrimeQ[2Prime[n + 3] + 3], If[ PrimePi[2Prime[n] + 3] + 3 == PrimePi[2Prime[n + 3] + 3], AppendTo[lst, Prime[n]]] ]]]], {n, 2048081}] (* Robert G. Wilson v, Jan 13 2005 *)

Extensions

Corrected and extended by Ray Chandler, Nov 04 2003
Entry revised by N. J. A. Sloane, Apr 01 2006

A089524 A089492 indexed by A000040.

Original entry on oeis.org

117814, 303839, 588398, 641658, 667591, 718808, 755409, 940389, 1168122, 1198507, 1229482, 1229483, 1588488, 1698574, 1764688, 1840175, 1933195, 1936524, 2249818, 2849725, 2859255, 3307463, 3363452, 3414415, 3481752
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Examples

			p(62178)=776117, 2*776117 + 3 = 1552237 = p(117814);
p(62179)=776119, 2*776119 + 3 = 1552241 = p(117815);
p(62180)=776137, 2*776137 + 3 = 1552277 = p(117816);
p(62181)=776143, 2*776143 + 3 = 1552289 = p(117817).
		

Crossrefs

Subsequence of A089525.

Formula

a(n) = k such that A089492(n) = A000040(k).
a(n) = A000720(A089492(n)). - Michel Marcus, Aug 06 2021

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A102810 Numbers n such that 2*prime(n)+3, 2*prime(n+1)+3, 2*prime(n+2)+3, 2*prime(n+3)+3 and 2*prime(n+4)+3 are consecutive primes.

Original entry on oeis.org

643266, 6127598, 9017291, 10371970, 10582732, 11357913, 13177036, 14860382, 30277278, 31675266, 41311665, 49626317, 50618743, 78805352, 86522154, 93614849, 106262424, 113388731, 117041604, 118113837, 140649556, 141178396
Offset: 1

Views

Author

Pierre CAMI, Feb 26 2005

Keywords

Crossrefs

Subsequence of A089009.

Extensions

a(3) corrected and a(9)-a(22) from Donovan Johnson, Dec 09 2008

A102811 Least k such that, for j from 1 to n, 2*P(k+n-j) + 3 are consecutive primes with P(i)= i-th prime.

Original entry on oeis.org

1, 3, 44, 62178, 643266
Offset: 1

Views

Author

Pierre CAMI, Feb 26 2005

Keywords

Examples

			For n = 1, 2*P(1) + 3 = 2*2 + 3 = 7 is prime, so a(1)=1 as P(1)=2.
For n = 2, 2*P(3) + 3 = 2*5 + 3 = 13 is prime, 2*P(4) + 3 = 2*7 + 3 = 17 is a prime consecutive to 13, so a(2)=3 as P(3)=5.
		

Crossrefs

Cf. A089009.

Programs

  • PARI
    a(n) = {my(m=1, p=vector(n, i, prime(i)), q); while(ispseudoprime(q=(2*p[1]+3)) + sum(k=2, n, (q=nextprime(q+1))==2*p[k]+3) < n, m++; p=concat(p[2..n], nextprime(p[n]+1))); m; } \\ Jinyuan Wang, Mar 20 2020

A159922 Least index m such that the five numbers 2*prime(m+k) + 3^n, k=0 to 4, are five consecutive primes.

Original entry on oeis.org

643266, 8813528, 1644953, 440421, 2826655, 1339785, 2775232, 988180, 196973, 643136, 4122122, 3477939, 182124, 6195602, 130854, 4937610, 2725523, 6118932, 231670, 478208, 2405748, 3913626, 1033788, 2945487, 22952758, 7168835, 15528738, 2753214, 2407038, 37795639
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2009

Keywords

Examples

			For n=15, prime(m=130854) = 1739401 starts the prime sequence 1739401, 1739411, 1739417, 1739443, 1739447 of five consecutive primes.
With 3^n = 3^15 = 14348907, the five numbers 17827709 = 2*1739401+14348907, 17827729 = 2*1739411 + 14348907, 17827741 = 2*1739417 + 14348907, 17827793 = 2*1739443 + 14348907, 17827801 = 2*1739447 + 14348907 are consecutive primes, and m = 130854 is the smallest prime index of this kind, so a(n=15) = 130854.
		

Programs

  • PARI
    a(n) = {my(m=1, p=[2, 3, 5, 7, 11], q, x=3^n); while(ispseudoprime(q=(2*p[1]+x)) + sum(k=2, 5, (q=nextprime(q+1))==2*p[k]+x) < 5, m++; p=concat(p[2..5], nextprime(p[5]+1))); m; } \\ Jinyuan Wang, Mar 20 2020

Formula

a(1) = A102810(1) = A102811(5) = A089009(11). - R. J. Mathar, Apr 28 2009

Extensions

Edited by R. J. Mathar, Apr 28 2009
Replaced the wrong value 14348916 by 14348907 (3^15=14348907). - Pierre CAMI, May 09 2009
More terms from Jinyuan Wang, Mar 20 2020
Showing 1-6 of 6 results.