cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082111 a(n) = n^2 + 5*n + 1.

Original entry on oeis.org

1, 7, 15, 25, 37, 51, 67, 85, 105, 127, 151, 177, 205, 235, 267, 301, 337, 375, 415, 457, 501, 547, 595, 645, 697, 751, 807, 865, 925, 987, 1051, 1117, 1185, 1255, 1327, 1401, 1477, 1555, 1635, 1717, 1801, 1887, 1975, 2065, 2157, 2251, 2347, 2445, 2545, 2647
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

From Gary W. Adamson, Jul 29 2009: (Start)
Let (a,b) = roots to x^2 - 5*x + 1 = 0 = 4.79128... and 0.208712...
Then a(n) = (n + a) * (n + b). Example: a(5) = 51 = (5 + 4.79128...) * (5 + 0.208712...) (End)
For n > 0: a(n) = A176271(n+2,n). - Reinhard Zumkeller, Apr 13 2010
a(n-2) = n*(n+1) - 5, n >= 0, with a(-2) = -5 and a(-1) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 21 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
Numbers m > 0 such that 4m+21 is a square. - Bruce J. Nicholson, Jul 19 2017
Numbers represented as 151 in number base B. If 'digits' from B upwards are allowed then 151(2)=15, 151(3)=25, 151(4)=37, 151(5)=51 also. - Ron Knott, Nov 14 2017
If A and B are sequences satisfying the recurrence t(n) = 5*t(n-1) - t(n-2) with initial values A(0) = 1, A(1) = n+5 and B(0) = -1, B(1) = n, then a(n) = A(i)^2 - A(i-1)*A(i+1) = B(j)^2 - B(j-1)*B(j+1) for i, j > 0. - Klaus Purath, Oct 18 2020
The prime terms in this sequence are listed in A089376. The prime factors are given in A038893. With the exception of 3 and 7, each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -5 (mod p). - Klaus Purath, Nov 24 2020

Crossrefs

First row of A082110.

Programs

Formula

a(n) = 2*n + a(n-1) + 4 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=7, a(2)=15. - Harvey P. Dale, Apr 22 2012
Sum_{n>=0} 1/a(n) = 8/15 + Pi*tan(sqrt(21)*Pi/2)/sqrt(21) = 1.424563592286456286... . - Vaclav Kotesovec, Apr 10 2016
From G. C. Greubel, Jul 19 2017: (Start)
G.f.: (1 + 4*x - 3*x^2)/(1 - x)^3.
E.g.f.: (x^2 + 6*x + 1)*exp(x). (End)
a(n) = A014209(n+1) - 2 = A338041(2*n+1). - Hugo Pfoertner, Oct 08 2020
a(n) = A249547(n+1) - A024206(n-4), n >= 5. - Klaus Purath, Nov 24 2020

Extensions

New title (using given formula) from Hugo Pfoertner, Oct 08 2020

A089373 Numbers k such that k^2 - 7*k + 7 is prime.

Original entry on oeis.org

0, 7, 10, 12, 15, 16, 22, 25, 27, 31, 36, 37, 40, 46, 51, 52, 55, 57, 60, 61, 67, 75, 85, 87, 90, 97, 102, 106, 111, 120, 136, 151, 156, 157, 162, 171, 172, 177, 180, 186, 192, 202, 205, 211, 220, 222, 225, 237, 240, 241, 250, 255, 261, 267, 271, 277, 282, 286, 291, 292
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 27 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna, 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano, 1997.

Crossrefs

Cf. A089376 (primes of the form k^2 - 7*k + 7).

Programs

  • GAP
    Concatenation([0],Filtered([7..300],k->IsPrime(k^2-7*k+7))); # Muniru A Asiru, Nov 24 2018
  • Magma
    [0] cat [n: n in [6..300] | IsPrime(n^2 - 7*n + 7)]; // Vincenzo Librandi, Dec 12 2011
    
  • Mathematica
    Column[(0),Select[Range[6,200],PrimeQ[ #^2-7#+7]&]] (* Vincenzo Librandi, Dec 12 2011 *)
  • PARI
    is(n)=isprime(n^2-7*n+7) \\ Charles R Greathouse IV, May 22 2017
    

Extensions

More terms from David Wasserman, Sep 15 2005
a(1)=0 inserted by Vincenzo Librandi, Dec 12 2011
Showing 1-2 of 2 results.