cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A353011 Indices of "late birds" in A090395 (denominator of d(n)/n): indices n such that A090395(k) > A090395(n) for all k > n.

Original entry on oeis.org

2, 12, 24, 36, 60, 72, 84, 96, 108, 180, 240, 252, 360, 480, 504, 720, 792, 1260, 1440, 1680, 1800, 2160, 2340, 2640, 3360, 3600, 5040, 5280, 6720, 7920, 10080, 12600, 15120, 15840, 18480, 20160, 21840, 25200, 30240, 36960, 40320, 43680, 55440, 60480, 65520
Offset: 1

Views

Author

M. F. Hasler, Apr 15 2022

Keywords

Comments

A090395(n) is the denominator of d(n)/n, where d = A000005 is the number of divisors.
The present sequence gives the indices of those terms of A090395 such that all subsequent terms are larger. This can be used to verify whether a number N is in A091896, which lists the numbers that don't occur in A090395.
It appears that a(n) is divisible by 12 for all n >= 2, by 5 for all n >= 18, by 24 (thus by 120) for all n > 23. Can somebody prove this?

Crossrefs

Cf. A000005 (number of divisors), A090395 (denominator of A000005(n)/n), A091895 (index of first occurrence of n in A090395), A091896 (numbers that don't occur in A090395).

Programs

  • PARI
    L=List(); forstep(n=m=65520,1,-1, m>(m=min(A090395(n),m)) && listput(L,n));Vecrev(L)

Formula

a(n+1) > a(n).

A090387 Numerator of d(n)/n, where d(n) (A000005) is the number of divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 4, 5, 2, 1, 2, 3, 4, 2, 2, 1, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 1, 2, 2, 4, 1, 2, 4, 2, 3, 2, 2, 2, 5, 3, 3, 4, 3, 2, 4, 4, 1, 4, 2, 2, 1, 2, 2, 2, 7, 4, 4, 2, 3, 4, 4, 2, 1, 2, 2, 2, 3, 4, 4, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 2, 4, 3, 4, 2, 4, 1, 2, 3, 2, 9, 2, 4, 2, 1, 8
Offset: 1

Views

Author

Ivan_E_Mayle(AT)a_provider.com, Jan 31 2004

Keywords

Comments

Values of n at which k first occurs, for k >= 1: 1, 3, 4, 15, 16, 175, 64, 105, 100, 567, 1024, 1925, 4096, 3645, 784, 945, 65536, ... - Robert G. Wilson v, Feb 04 2004. [Is this A136641? - Editors]

Examples

			a(6)=2 because the number of divisors of 6 is 4 and 4 divided by 6 equals 2/3, which has 2 as its numerator.
		

Crossrefs

Cf. A000005, A090395 (denominators), A136641.

Programs

  • Maple
    with(numtheory): seq(numer(tau(n)/n), n=1..105) ; # Zerinvary Lajos, Jun 04 2008
  • PARI
    A090387(n) = numerator(numdiv(n)/n); \\ Antti Karttunen, Sep 25 2018
    
  • Python
    from math import gcd
    from sympy import divisor_count
    def A090387(n): return (d := divisor_count(n))//gcd(n,d) # Chai Wah Wu, Jun 20 2022

Extensions

More terms from Robert G. Wilson v, Feb 04 2004

A091896 Numbers n such that there exists no k for which the denominator of d(k)/k is n, where d = A000005 is the number-of-divisors function.

Original entry on oeis.org

18, 30, 72, 112, 144, 243, 252, 288, 294, 336, 360, 396, 468, 504, 576, 612, 616, 625, 684, 726, 728, 792, 810, 828, 840, 936, 952, 960, 1014, 1044, 1064, 1116, 1224, 1250, 1260, 1288, 1332, 1350, 1368, 1386, 1440, 1476, 1548, 1568, 1584, 1624, 1638, 1656
Offset: 1

Views

Author

Robert G. Wilson v, Feb 09 2004

Keywords

Comments

The number of terms <= 10^n: 0, 3, 28, 311, 3541, for n = 1, 2, 3, 4, 5.
Sequence A353011 lists the indices n such that A090395(k) > A090395(n) for all k > n. This allows one to know whether a given number is in this sequence or not. - M. F. Hasler, Apr 15 2022
Another way to confirm a 0 is by looking at A005179(m)/m. If A005179(m)/m > n then d(k) cannot be a multiple of m. - David A. Corneth, Apr 16 2022

Crossrefs

Cf. A000005 (number-of-divisors function d), A005179 (smallest number with exactly n divisors), A090395 (denominator of d(n)/n), A353011 (indices of "late birds" in A090395).
Indices of zeros in A091895 (index where n occurs first in A090395, or 0 if n is not in A090395).

Programs

  • Mathematica
    a = Table[0, {2000}]; Do[m = n; b = Denominator[ DivisorSigma[0, n]/n]; If[b < 2001 && a[[b]] == 0, a[[b]] = n], {n, 1, 25000000}]; Select[ Range[2000], a[[ # ]] == 0 &]
  • PARI
    select( {is_A091896(n)=!A091895(n)}, [1..10^4] ) \\ M. F. Hasler, Apr 04 2022

Extensions

Edited by M. F. Hasler, Apr 04 2022

A091895 Least number k such that the denominator of d(k)/k = n, or zero if no such number exists, where d is the number-of-divisors function A000005.

Original entry on oeis.org

1, 8, 3, 4, 5, 72, 7, 80, 108, 20, 11, 240, 13, 28, 15, 16, 17, 0, 19, 480, 21, 44, 23, 48, 25, 52, 27, 560, 29, 0, 31, 448, 33, 68, 35, 864, 37, 76, 39, 160, 41, 1680, 43, 880, 540, 92, 47, 144, 49, 200, 51, 1040, 53, 972, 55, 112, 57, 116, 59, 1920, 61, 124, 756, 64, 65
Offset: 1

Views

Author

Robert G. Wilson v, Feb 09 2004

Keywords

Comments

k is a multiple of n.
A search limit of 2*n^2 (as suggested by Hugo Pfoertner on the SeqFan list) appears to be sufficient: Up to n = 10^5, the largest ratio r(n) = a(n)/n is r(90090) = 672. - M. F. Hasler, Apr 04 2022
It appears that even a(n) <= 16*n^(4/3), verified up to n = 10^6 with search limit 2*n^2. Large values of a(n)/n^(4/3) are reached in particular at multiples of 2*3*5*7*11, but also at 2^3*3^3*5*11*13. See A352834 for more. - M. F. Hasler, Apr 15 2022

Crossrefs

Cf. A090395, zeros are in A091896.
Cf. A000005 (number-of-divisors function).
Cf. A352834 (a(n)/n).

Programs

  • Mathematica
    a = Table[0, {100}]; Do[b = Denominator[DivisorSigma[0, n]/n]; If[b < 101 && a[[b]] == 0, a[[b]] = n], {n, 1, 2640}]; a
  • PARI
    apply( {A091895(n,L=n^2*2)=forstep(k=n,L,n,denominator(numdiv(k)/k)==n&&return(k))}, [1..99]) \\ M. F. Hasler, Apr 04 2022

Formula

a(n) = n*A352834(n). - M. F. Hasler, Apr 15 2022

A348172 a(n) is the number of positive k (can be greater than n) such that A000005(n)/n = A000005(k)/k.

Original entry on oeis.org

2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1
Offset: 1

Views

Author

Tejo Vrush, Oct 04 2021

Keywords

Comments

The first 1 occurs at a(4). The corresponding k value is 4.
The first 2 occurs at a(1). The corresponding k values are 1, 2.
The first 3 occurs at a(9). The corresponding k values are 9, 18, 24.
The first 4 occurs at a(243). The corresponding k values are 243, 405, 486, 810.
Does every number appear in this sequence?
The first 5 is at a(3189375) with k-values {3189375, 5467500, 6378750, 6561000, 8748000} while the first 6 is at 3176523 with k-values {3176523, 4084101, 6353046, 6806835, 8168202, 13613670}. If 7 appears it does so past 10^8. - Charles R Greathouse IV, Oct 05 2021

Examples

			For n = 9, the k such that A000005(9)/9 = 1/3 = A000005(k)/k are 9, 18, and 24. Therefore, a(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[Function[r, Count[Range[Ceiling[4/r^2]], _?(DivisorSigma[0, #]/# == r &)]][DivisorSigma[0, #]/#] &, 105] (* or *)
    Block[{nn = 7, m, s}, m = 2^(2 nn); s = KeySort@ PositionIndex[Array[DivisorSigma[0, #]/# &, m]]; s = Reverse@ KeyDrop[s, TakeWhile[Keys@ s, 4/#^2 > m &]]; Length /@ Array[Lookup[s, DivisorSigma[0, #]/#] &, 2^nn]] (* Michael De Vlieger, Oct 04 2021 *)
  • PARI
    a(n) = {my(q=numdiv(n)/n); sum(i=1, 4/q^2, numdiv(i)/i == q);} \\ Michel Marcus, Oct 04 2021
    
  • PARI
    a(n) = my(q=numdiv(n)/n, s=denominator(q), res = 0); forstep(i=s, 4/q^2, s, if(numdiv(i) == q * i, res++)); res \\ David A. Corneth, Oct 07 2021
    
  • PARI
    \\ See Greathouse link

A352834 Least k > 0 such that denominator( d(k*n)/(k*n) ) = n, or 0 if no such k exists, where d = A000005 is the number-of-divisors function.

Original entry on oeis.org

1, 4, 1, 1, 1, 12, 1, 10, 12, 2, 1, 20, 1, 2, 1, 1, 1, 0, 1, 24, 1, 2, 1, 2, 1, 2, 1, 20, 1, 0, 1, 14, 1, 2, 1, 24, 1, 2, 1, 4, 1, 40, 1, 20, 12, 2, 1, 3, 1, 4, 1, 20, 1, 18, 1, 2, 1, 2, 1, 32, 1, 2, 12, 1, 1, 40, 1, 20, 1, 48, 1, 0, 1, 2, 36, 20, 1, 40, 1, 5, 1, 2, 1, 4, 1, 2, 1, 2, 1, 48
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2022

Keywords

Comments

This sequence is motivated by the fact that A091895(n) is always a multiple of n, so we list here the ratio A091895(n)/n.
Record values are a(1) = 1, a(2) = 4, a(6) = a(9) = 12, a(12) = 20,
a(20) = a(36) = 24, a(42) = a(66) = 40, a(70) = a(90) = a(110) = a(120) =
a(126) = a(130) = a(170) = a(190) = a(198) = 48, a(210) = a(330) = a(390) = 64,
a(420) = a(660) = a(780) = a(900) = a(1020) = 96,
a(1050) = a(1134) = 120, a(1470) = a(1680) = a(1890) = 144,
a(2310) = a(2730) = a(3150) = a(3570) = a(3990) = a(4290) = 192,
a(4320) = 210, a(6300) = 216, a(7560) = 240, a(9240) = a(10920) = 288,
a(13860) = a(16380) = a(17820) = a(20020) = 336, a(20790) = 360,
a(23760) = a(28080) = 420, a(34650) = a(40950) = 432,
a(41580) = a(49140) = 480, a(60060) = a(78540) = a(80850) = a(87780) = 576,
a(90090) = 672, ...
Up to n = 10^6, the terms are bounded by a(n) < 16*n^(1/3). The largest ratios r(n) := a(n)/n^(1/3) are r(2310) ~ 14.5, r(23760) ~ 14.6, r(60060) ~ 14.7, r(90090) ~ 14.99, r(154440) ~ 15.66, r(201960) = 14.3, r(270270) = 14.85, r(420420) = 14.4, r(510510) = 14.4, r(720720) = 14.05, ...

Crossrefs

Cf. A000005 (number-of-divisors function), A090395 (denominator of d(n)/n), A091895 (a(n)*n), A091896 (indices of zeros of a(n)).

Programs

  • PARI
    apply( {A352834(n,L=n^2*2)=forstep(k=n,L,n,denominator(numdiv(k)/k)==n&&return(k/n))}, [1..99])

Formula

a(n) = A091895(n)/n; a(n) = 0 iff n is in A091896.
Conjecture: a(n) = O(n^(1/3)).

A368523 Positive integers in decreasing order of tau(k)/k, where tau(k) = A000005(k).

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 5, 10, 9, 18, 24, 16, 20, 7, 14, 15, 30, 36, 28, 48, 40, 60, 21, 42, 32, 11, 22, 72, 13, 26, 27, 54, 56, 84, 44, 45, 90, 120, 80, 96, 33, 66, 25, 50, 17, 34, 52, 35, 70, 108, 64, 19, 38, 144, 39, 78, 180, 63, 126, 168, 88, 132, 100, 112
Offset: 1

Views

Author

Keith J. Bauer, Dec 28 2023

Keywords

Comments

Because tau(k)/k is bounded by 2/sqrt(k), this sequence is well-defined.
In the case of ties, terms are sorted from least to greatest.
Let c be the j-th distinct value of tau(a(n))/a(n). Terms of this sequence for which tau(a(n))/a(n) >= c are the proper divisors of A059992(j + 1) for 1 <= j <= 4. True for j = 0 if the 0th value of c is taken to be infinity. Pattern breaks for j > 4.

Examples

			tau(1)/1 = tau(2)/2 = 1
tau(4)/4 = 3/4
tau(3)/3 = tau(6)/6 = 2/3
tau(8)/8 = tau(12)/12 = 1/2
tau(5)/5 = tau(10)/10 = 2/5
tau(9)/9 = tau(18)/18 = tau(24)/24 = 1/3
		

Crossrefs

Programs

  • Lua
    length = 100
    result = {}
    for n = 1, length do
      local div_count = 0
      local root_n = math.sqrt(n)
      for d = 1, root_n do
        if n % d == 0 then
          div_count = div_count + 2
        end
      end
      if (root_n == math.floor(root_n)) then
        div_count = div_count - 1
      end
      result[n] = {n, div_count / n}
    end
    function compare(a, b)
      if a[2] ~= b[2] then
        return a[2] > b[2]
      else
        return a[1] < b[1]
      end
    end
    table.sort(result, compare)
    i = 1
    bound = 2 / math.sqrt(length)
    while result[i][2] >= bound do
      io.write(result[i][1] .. ',')
      i = i + 1
    end
  • Mathematica
    nmax = 100; s = Sort[Table[{k, DivisorSigma[0, k]/k}, {k, 1, nmax^2}], #1[[2]] >= #2[[2]] &]; Table[s[[j, 1]], {j, 1, nmax}] (* Vaclav Kotesovec, Jan 04 2024 *)

A355140 n/d(n) rounded to the nearest integer, where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 2, 3, 3, 6, 2, 7, 4, 4, 3, 9, 3, 10, 3, 5, 6, 12, 3, 8, 7, 7, 5, 15, 4, 16, 5, 8, 9, 9, 4, 19, 10, 10, 5, 21, 5, 22, 7, 8, 12, 24, 5, 16, 8, 13, 9, 27, 7, 14, 7, 14, 15, 30, 5, 31, 16, 11, 9, 16, 8, 34, 11, 17, 9, 36, 6, 37, 19, 13, 13, 19
Offset: 1

Views

Author

Sameer Khan, Jun 20 2022

Keywords

Comments

In the ambiguous case, fractions are rounded up.

Examples

			a(1) = round (1 / 1) = 1;
a(4) = round (4 / 3) = 1;
a(5) = round (5 / 2) = 3;
		

Crossrefs

Cf. A000005, A078709 (floor), A334762 (ceiling), A090395 (numerators), A090387 (denominators).

Programs

  • Mathematica
    Table[Floor[n/DivisorSigma[0,n]+1/2],{n,100}] (* Harvey P. Dale, Dec 22 2022 *)
  • Python
    from sympy import divisor_count
    def A355140(n): return (2*n+(d:=divisor_count(n)))//(2*d) # Chai Wah Wu, Jun 20 2022

Formula

a(n) = round (n / A000005(n)).
Showing 1-8 of 8 results.