A176774 Smallest polygonality of n = smallest integer m>=3 such that n is m-gonal number.
3, 4, 5, 3, 7, 8, 4, 3, 11, 5, 13, 14, 3, 4, 17, 7, 19, 20, 3, 5, 23, 9, 4, 26, 10, 3, 29, 11, 31, 32, 12, 7, 5, 3, 37, 38, 14, 8, 41, 15, 43, 44, 3, 9, 47, 17, 4, 50, 5, 10, 53, 19, 3, 56, 20, 11, 59, 21, 61, 62, 22, 4, 8, 3, 67, 68, 24, 5, 71, 25, 73, 74, 9, 14, 77, 3, 79, 80, 4, 15, 83
Offset: 3
Keywords
Examples
a(12) = 5 since 12 is a pentagonal number, but not a square or triangular number. - _Michael B. Porter_, Jul 16 2016
Links
- Michel Marcus, Table of n, a(n) for n = 3..10000
- Eric W. Weisstein, Polygonal Number. MathWorld.
Programs
-
Mathematica
a[n_] := (m = 3; While[Reduce[k >= 1 && n == k (k (m - 2) - m + 4)/2, k, Integers] == False, m++]; m); Table[a[n], {n, 3, 100}] (* Jean-François Alcover, Sep 04 2016 *)
-
PARI
a(n) = {k=3; while (! ispolygonal(n, k), k++); k;} \\ Michel Marcus, Mar 25 2015
-
Python
from _future_ import division from gmpy2 import isqrt def A176774(n): k = (isqrt(8*n+1)-1)//2 while k >= 2: a, b = divmod(2*(k*(k-2)+n),k*(k-1)) if not b: return a k -= 1 # Chai Wah Wu, Jul 28 2016
Comments