cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A176775 Index of n as m-gonal number for the smallest possible m (=A176774(n)).

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 6, 4, 2, 3, 5, 2, 3, 7, 2, 3, 2, 2, 3, 4, 5, 8, 2, 2, 3, 4, 2, 3, 2, 2, 9, 4, 2, 3, 7, 2, 6, 4, 2, 3, 10, 2, 3, 4, 2, 3, 2, 2, 3, 8, 5, 11, 2, 2, 3, 7, 2, 3, 2, 2, 5, 4, 2, 12, 2, 2, 9, 4, 2, 3, 5, 2, 3, 4, 2, 3, 13, 8, 3, 4, 5, 6, 2, 2, 3, 10, 2, 3, 2, 2
Offset: 3

Views

Author

Max Alekseyev, Apr 25 2010

Keywords

Comments

a(n)=2 iff A176774(n)=n.

Crossrefs

Cf. A176774.

Programs

  • PARI
    f(n) = {k=3; while (! ispolygonal(n, k), k++); k; } \\ A176774
    a(n) = my(m=f(n)); (m-4+sqrtint((m-4)^2+8*(m-2)*n)) / (2*m-4); \\ Michel Marcus, May 09 2021

Formula

a(n) = (m-4+sqrt((m-4)^2+8*(m-2)*n)) / (2*m-4), where m = A176774(n).

A176948 a(n) is the smallest solution x to A176774(x)=n; a(n)=0 if this equation has no solution.

Original entry on oeis.org

3, 4, 5, 0, 7, 8, 24, 27, 11, 33, 13, 14, 42, 88, 17, 165, 19, 20, 60, 63, 23, 69, 72, 26, 255, 160, 29, 87, 31, 32, 315, 99, 102, 208, 37, 38, 114, 805, 41, 123, 43, 44, 132, 268, 47, 696, 475, 50, 150, 304, 53, 159, 162, 56, 168, 340, 59, 177, 61, 62, 615, 1309, 192, 388
Offset: 3

Views

Author

Vladimir Shevelev, Apr 29 2010

Keywords

Comments

A greedy inverse function to A176774.
Conjecture: For every n >= 4, except for n=6, there exists an n-gonal number N which is not k-gonal for 3 <= k < n.
This means that the sequence contains only one 0: a(6)=0. For n=6 it is easy to prove that every hexagonal number (A000384) is also triangular (A000217), i.e., N does not exist. - Vladimir Shevelev, Apr 30 2010

Examples

			For n=9, 24 is a nonagonal number, but not an octagonal number, heptagonal number, hexagonal number, etc. The smaller nonagonal number 9 is also a square number. Thus, a(9) = 24. - _Michael B. Porter_, Jul 16 2016
		

Crossrefs

Programs

  • Maple
    A139601 := proc(k,n) option remember ; n/2*( (k-2)*n-k+4) ; end proc:
    A176774 := proc(n) option remember ; local k,m,pol ; for k from 3 do for m from 0 do pol := A139601(k,m) ; if pol = n then return k ; elif pol > n then break; end if; end do: end do: end proc:
    A176948 := proc(n) if n = 6 then 0; else for x from 3 do if A176774(x)= n then return x ; end if; end do: end if; end proc:
    seq(A176948(n),n=3..80) ; # R. J. Mathar, May 03 2010
  • Mathematica
    A176774[n_] := A176774[n] = (m = 3; While[Reduce[k >= 1 && n == k (k (m - 2) - m + 4)/2, k, Integers] == False, m++]; m); a[6] = 0; a[p_?PrimeQ] := p; a[n_] := (x = 3; While[A176774[x] != n, x++]; x); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 3, 100}] (* Jean-François Alcover, Sep 04 2016 *)

Formula

a(p) = p if p is any odd prime.

Extensions

More terms from R. J. Mathar, May 03 2010

A342491 a(n) = f(x)+f(y)+f(z), where (x,y,h) is the n-th Pythagorean triple listed in (A046083, A046084, A009000), and f(m)=A176774(m) is the smallest polygonality of m.

Original entry on oeis.org

12, 14, 23, 12, 28, 29, 27, 20, 38, 52, 27, 22, 11, 47, 20, 49, 53, 16, 69, 81, 17, 47, 59, 59, 34, 41, 93, 32, 76, 33, 34, 121, 76, 93, 88, 33, 37, 39, 101, 102, 83, 27, 90, 52, 73, 183, 75, 37, 45, 130, 105, 15, 155, 83, 120, 54, 106, 133, 129, 15, 123, 42, 225
Offset: 1

Views

Author

Michel Marcus, Mar 14 2021

Keywords

Comments

Inspired by (A245646, A245647, A245648), for which a(n) = 12.
Examples of lower terms: 11 for (21, 28, 35), 10 for (64, 120, 136) and 9 for (8778, 10296, 13530).

Examples

			a(1) = 12 because (3, 4, 5) are (3-, 4-, 5-) gonal numbers, and 3+4+5=12.
		

Crossrefs

Cf. A213188 (see 2nd comment).

Programs

  • PARI
    tp(n) = my(k=3); while( !ispolygonal(n,k), k++); k; \\ A176774
    f(v) = vecsum(apply(tp, v));
    list(lim) = {my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [h, middle, small]);););); v = vecsort(Vec(v)); apply(f, v);} \\ adapted from A009000

Formula

a(n) = f(A046083(n)) + f(A046084(n)) + f(A009000(n)) where f is A176774.

A342858 a(n) is the least integer h such that there exists a Pythagorean triple (x, y, h) that satisfies f(x)+f(y)+f(h)=n where f(m)=A176774(m) is the smallest polygonality of m; a(n) = 0 if no such h exists.

Original entry on oeis.org

13530, 136, 35, 5, 4510, 10, 100, 45, 51, 1404
Offset: 9

Views

Author

Michel Marcus, Mar 26 2021

Keywords

Comments

a(19) > 10^9 if it exists.
It appears that the triples whose sum is 10 (as in the 2nd example below) have legs n^6 = A001014(n), (n^8 - n^4)/2 = A218131(n+1)/2 and (n^8 + n^4)/2 = A071231(n) for n >= 2; they consist of 2 triangular numbers and 1 square number. - Michel Marcus, Apr 12 2021

Examples

			a(9)  = 13530 with A176774([8778, 10296, 13530]) = [3,3,3].
a(10) = 136   with A176774([64, 120, 136])       = [4,3,3].
a(11) = 35    with A176774([21, 28, 35])         = [3,3,5].
a(12) = 5     with A176774([3, 4, 5])            = [3,4,5].
a(13) = 4510  with A176774([2926, 3432, 4510])   = [3,5,5].
a(14) = 10    with A176774([6, 8, 10])           = [3,8,3].
a(15) = 100   with A176774([28, 96, 100])        = [3,8,4].
a(16) = 45    with A176774([27, 36, 45])         = [10,3,3].
a(17) = 51    with A176774([45, 24, 51])         = [3,9,5].
a(18) = 1404  with A176774([540, 1296, 1404])    = [7,4,7].
		

Crossrefs

Cf. A213188 (see 2nd comment).

Programs

  • PARI
    tp(n) = if (n<3, [n], my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); v = Vec(v); v[#v]); \\ A176774
    vsum(v) = vecsum(apply(tp, v));
    lista(limp, lim) = {my(vr = vector(limp)); for(u = 2, sqrtint(lim), for(v = 1, u, if (u*u+v*v > lim, break); if ((gcd(u,v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u*u+v*v) > lim, break); my(w = [i*(u*u - v*v), i*2*u*v, i*(u*u+v*v)]); my(h = i*(u*u+v*v)); my(sw = vsum(w)); if (sw <= limp, if (vr[sw] == 0, vr[sw] = h, if (h < vr[sw], vr[sw] = h))););););); vector(#vr - 8, k, vr[k+8]);}
    lista(80, 15000) \\ Michel Marcus, Apr 16 2021

A343981 a(n) is the least integer h such that there exists a Pythagorean triple whose hypotenuse is h and whose other legs z satisfy A176774(z) = n.

Original entry on oeis.org

35, 0, 13, 0, 2727, 104, 13911, 17370, 426996, 1855, 340119, 89375, 3588, 37400, 3034, 57709, 2103750, 88400, 53290, 506817, 15263560, 141921, 660350, 3372270, 419356, 40716, 57526469, 356025, 639135, 5316785, 872934, 1493219, 11939849, 119616, 331290, 3008185
Offset: 3

Views

Author

Michel Marcus, May 06 2021

Keywords

Comments

a(4)=0 is conjectured.
a(6)=0 because all hexagonal numbers are triangular numbers (see A176948).

Examples

			a(3)=35 because of [21, 28, 35] where A176774(21) = A176774(35) = 3.
a(5)=13 because of [5, 12, 13] where A176774(5) = A176774(12) = 5.
a(7)=2727 because of [540, 2673, 2727] where A176774(540) = A176774(2673) = 7.
		

Crossrefs

Programs

  • PARI
    p(s, n) = ((s-2)*n^2 - (s-4)*n)/2;
    lista(nn, n) = {my(v = vector(nn, k, p(n, k))); v = select(x->(tp(x)==n), v); my(kh = oo, kv = oo); for (i=1, #v, for (j=1, i, my(h2 = v[i]^2 + v[j]^2, h); if (issquare(h2, &h), if (h < kh, kh = h; kv = [v[j], v[i], kh]);););); kh;}
    a(n) = {if (n==4, return (0)); if (n==6, return (0)); my(nn = 2); while ((res=lista(nn, n)) == oo, nn *= 2); res;}

A090466 Regular figurative or polygonal numbers of order greater than 2.

Original entry on oeis.org

6, 9, 10, 12, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 33, 34, 35, 36, 39, 40, 42, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 105, 106, 108, 111, 112, 114, 115, 117, 118
Offset: 1

Views

Author

Robert G. Wilson v, Dec 01 2003

Keywords

Comments

The sorted k-gonal numbers of order greater than 2. If one were to include either the rank 2 or the 2-gonal numbers, then every number would appear.
Number of terms less than or equal to 10^k for k = 1,2,3,...: 3, 57, 622, 6357, 63889, 639946, 6402325, 64032121, 640349979, 6403587409, 64036148166, 640362343980, ..., . - Robert G. Wilson v, May 29 2014
The n-th k-gonal number is 1 + k*n(n-1)/2 - (n-1)^2 = A057145(k,n).
For all squares (A001248) of primes p >= 5 at least one a(n) exists with p^2 = a(n) + 1. Thus the subset P_s(3) of rank 3 only is sufficient. Proof: For p >= 5, p^2 == 1 (mod {3,4,6,8,12,24}) and also P_s(3) + 1 = 3*s - 2 == 1 (mod 3). Thus the set {p^2} is a subset of {P_s(3) + 1}; Q.E.D. - Ralf Steiner, Jul 15 2018
For all primes p > 5, at least one polygonal number exists with P_s(k) + 1 = p when k = 3 or 4, dependent on p mod 6. - Ralf Steiner, Jul 16 2018
Numbers m such that r = (2*m/d - 2)/(d - 1) is an integer for some d, where 2 < d < m is a divisor of 2*m. If r is an integer, then m is the d-th (r+2)-gonal number. - Jianing Song, Mar 14 2021

References

  • Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.

Crossrefs

Cf. A057145, A001248, A177028 (A342772, A342805), A177201, A316676, A364693 (characteristic function).
Complement is A090467.
Sequence A090428 (excluding 1) is a subsequence of this sequence. - T. D. Noe, Jun 14 2012
Other subsequences: A324972 (squarefree terms), A324973, A342806, A364694.
Cf. also A275340.

Programs

  • Maple
    isA090466 := proc(n)
        local nsearch,ksearch;
        for nsearch from 3 do
            if A057145(nsearch,3) > n then
                return false;
            end if;
            for ksearch from 3 do
                if A057145(nsearch,ksearch) = n then
                    return true;
                elif A057145(nsearch,ksearch) > n then
                    break;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 1000 do
        if isA090466(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 28 2016
  • Mathematica
    Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2,{n,3,100},{k,3,40}]]],67] (* corrected by Ant King, Sep 19 2011 *)
    mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* Robert G. Wilson v, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
  • PARI
    list(lim)=my(v=List()); lim\=1; for(n=3,sqrtint(8*lim+1)\2, for(k=3,2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ Charles R Greathouse IV, Jan 19 2017
    
  • PARI
    is(n)=for(s=3,n\3+1,ispolygonal(n,s)&&return(s)); \\ M. F. Hasler, Jan 19 2017
    
  • PARI
    isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ Jianing Song, Mar 14 2021

Formula

Integer k is in this sequence iff A176774(k) < k. - Max Alekseyev, Apr 24 2018

Extensions

Verified by Don Reble, Mar 12 2006

A177025 Number of ways to represent n as a polygonal number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2, 3
Offset: 3

Views

Author

Vladimir Shevelev, May 01 2010

Keywords

Comments

Frequency of n in the array A139601 or A086270 of polygonal numbers.
Since n is always n-gonal number, a(n) >= 1.
Conjecture: Every positive integer appears in the sequence.
Records of 2, 3, 4, 5, ... are reached at n = 6, 15, 36, 225, 561, 1225, ... see A063778. [R. J. Mathar, Aug 15 2010]

References

  • J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897)

Crossrefs

Programs

  • Maple
    A177025 := proc(p)
        local ii,a,n,s,m ;
        ii := 2*p ;
        a := 0 ;
        for n in numtheory[divisors](ii) do
            if n > 2 then
                s := ii/n ;
                if (s-2) mod (n-1) = 0 then
                    a := a+1 ;
                end if;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Jan 10 2013
  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* T. D. Noe, Apr 13 2011 *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* Jonathan Sondow, May 09 2014 *)
  • PARI
    a(n) = sum(i=3, n, ispolygonal(n, i)); \\ Michel Marcus, Jul 08 2014
    
  • Python
    from sympy import divisors
    def a(n):
        i=2*n
        x=0
        for d in divisors(i):
            if d>2:
                s=i/d
                if (s - 2)%(d - 1)==0: x+=1
        return x # Indranil Ghosh, Apr 28 2017, translated from Maple code by R. J. Mathar

Formula

a(n) = A129654(n) - 1.
G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

Extensions

Extended by R. J. Mathar, Aug 15 2010

A177029 Numbers that have exactly two different representations as polygonal numbers.

Original entry on oeis.org

6, 9, 10, 12, 16, 18, 22, 24, 25, 27, 30, 33, 34, 35, 39, 40, 42, 46, 48, 49, 52, 54, 57, 58, 60, 63, 65, 69, 72, 76, 82, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 102, 106, 108, 114, 115, 118, 121, 123, 124, 125, 129, 130, 132, 133, 138, 142, 147, 150, 155, 159, 160, 162, 166, 168
Offset: 1

Views

Author

Vladimir Shevelev, May 01 2010

Keywords

Comments

Numbers that have only A177025(.)=1 representation are listed by A090467.

Examples

			6 is a triangular and a hexagonal number, but is not any other k-gonal number.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {for (n=1, nn, if (sum(k=3, n, ispolygonal(n, k)) == 2, print1(n, ", ")););} \\ Michel Marcus, Mar 25 2015
    
  • Python
    A177029_list = []
    for m in range(1,10**4):
        n, c = 3, 0
        while n*(n+1) <= 2*m:
            if not 2*(n*(n-2) + m) % (n*(n - 1)):
                c += 1
                if c > 1:
                    break
            n += 1
        if c == 1:
            A177029_list.append(m) # Chai Wah Wu, Jul 28 2016

Formula

{m: A177025(m)=2}.

Extensions

Extended by R. J. Mathar, Aug 15 2010

A177028 Irregular table: row n contains values k (in descending order) for which n is a k-gonal number.

Original entry on oeis.org

3, 4, 5, 6, 3, 7, 8, 9, 4, 10, 3, 11, 12, 5, 13, 14, 15, 6, 3, 16, 4, 17, 18, 7, 19, 20, 21, 8, 3, 22, 5, 23, 24, 9, 25, 4, 26, 27, 10, 28, 6, 3, 29, 30, 11, 31, 32, 33, 12, 34, 7, 35, 5, 36, 13, 4, 3, 37, 38, 39, 14, 40, 8, 41, 42, 15
Offset: 3

Views

Author

Vladimir Shevelev, May 01 2010

Keywords

Comments

Every row begins with n and contains all values of k for which n is a k-gonal number.
The cardinality of row n is A177025(n). In particular, if n is prime, then row n contains only n.

Examples

			The table starts with row n=3 as:
3;
4;
5;
6, 3;
7;
8;
9, 4;
10, 3;
11;
12, 5;
13;
14;
15, 6, 3;
16, 4;
17;
18, 7;
19;
20;
Before n=37, we have row n=36: {36, 13, 4, 3}. Thus 36 is k-gonal for k=3, 4, 13 and 36.
		

Crossrefs

Programs

  • Maple
    P := proc(n,k) n/2*((k-2)*n-k+4) ;end proc:
    A177028 := proc(n) local k ,j,r,kg ; r := {} ; for k from n to 3 by -1 do for j from 1 do kg := P(j,k) ; if kg = n then r := r union {k} ;elif kg > n then break ; end if; end do; end do: sort(convert(r,list),`>`) ; end proc:
    for n from 3 to 20 do print(A177028(n)) ; end do: # R. J. Mathar, Apr 17 2011
  • Mathematica
    nn = 100; t = Table[{}, {nn}]; Do[n = 2; While[p = n*(4 - 2*n - r + n*r)/2; p <= nn, AppendTo[t[[p]], r]; n++], {r, 3, nn}]; Flatten[Reverse /@ t] (* T. D. Noe, Apr 18 2011 *)
  • PARI
    row(n) = my(list = List()); for (k=3, n, if (ispolygonal(n, k), listput(list, k))); Vecrev(list); \\ Michel Marcus, Mar 19 2021
    
  • PARI
    row(n)=my(v=List());fordiv(2*n,k, if(k<2,next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v,s))); Vec(v) \\ Charles R Greathouse IV, Mar 19 2021

A090467 Numbers which are not regular figurative or polygonal numbers of order greater than 2. That is, numbers not of the form 1 + k*m*(m-1)/2 - (m-1)^2 where k > 2 and m > 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 17, 19, 20, 23, 26, 29, 31, 32, 37, 38, 41, 43, 44, 47, 50, 53, 56, 59, 61, 62, 67, 68, 71, 73, 74, 77, 79, 80, 83, 86, 89, 97, 98, 101, 103, 104, 107, 109, 110, 113, 116, 119, 122, 127, 128, 131, 134, 137, 139, 140, 143, 146, 149, 151, 152
Offset: 1

Views

Author

Robert G. Wilson v, Dec 01 2003

Keywords

Comments

The m-th k-gonal number is 1 + k*m*(m-1)/2 - (m-1)^2 = A057145(k,m).
Numbers that are strictly trivially polygonal: numbers m that are only 2-gonal and m-gonal. - Daniel Mondot, Jun 13 2024

Examples

			3 is a triangular number, but is not a k-gonal number for any other k, so 3 is a term.
6 is both a triangular number and a hexagonal number, so 6 is not a term.
		

References

  • Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.

Crossrefs

Complement is A090466.

Programs

  • Mathematica
    Complement[ Table[i, {i, 300}], Take[ Union[ Flatten[ Table[1 + k*n(n - 1)/2 - (n - 1)^2, {n, 3, 40}, {k, 3, 300}]]], 300]]
  • PARI
    isok(n) = (n < 3) || (vecsum(vector(n-2, k, k+=2; ispolygonal(n, k))) == 1); \\ Michel Marcus, May 01 2016

Formula

An integer n >= 3 is in this sequence iff A176774(n) = n (or, equivalently, A176775(n) = 2). - Max Alekseyev, Apr 24 2018

Extensions

Verified by Don Reble, Mar 12 2006
Showing 1-10 of 19 results. Next