cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A063985 Partial sums of cototient sequence A051953.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 10, 14, 17, 23, 24, 32, 33, 41, 48, 56, 57, 69, 70, 82, 91, 103, 104, 120, 125, 139, 148, 164, 165, 187, 188, 204, 217, 235, 246, 270, 271, 291, 306, 330, 331, 361, 362, 386, 407, 431, 432, 464, 471, 501, 520, 548, 549, 585, 600, 632, 653, 683
Offset: 1

Views

Author

Labos Elemer, Sep 06 2001

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1 = gcd(x,y)}; a(n) = A000217(n) - A002088(n) = A100613(n) - A185670(n). - Reinhard Zumkeller, Jan 21 2013
8*a(n) is the number of dots not in direct reach via a straight line from the center of a 2*n+1 X 2*n+1 array of dots. - Kiran Ananthpur Bacche, May 25 2022

Crossrefs

Programs

  • Haskell
    a063985 n = length [()| x <- [1..n], y <- [x..n], gcd x y > 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Java
    // Save the file as A063985.java to compile and run
    import java.util.stream.IntStream;
    import java.util.*;
    public class A063985 {
      public static int getInvisiblePoints(int n) {
        Set slopes = new HashSet();
        IntStream.rangeClosed(1, n).forEach(i ->
          {IntStream.rangeClosed(1, n).forEach(j ->
            slopes.add(Float.valueOf((float)i/(float)j))); });
        return (n * n - slopes.size() + n - 1) / 2;
      }
      public static void main(String args[]) throws Exception {
        IntStream.rangeClosed(1, 30).forEach(i ->
          System.out.println(getInvisiblePoints(i)));
      }
    } // Kiran Ananthpur Bacche, May 25 2022
  • Mathematica
    f[n_] := n(n + 1)/2 - Sum[ EulerPhi@i, {i, n}]; Array[f, 58] (* Robert G. Wilson v *)
    Accumulate[Table[n-EulerPhi[n],{n,1,60}]] (* Harvey P. Dale, Aug 19 2015 *)
  • PARI
    { a=0; for (n=1, 1000, write("b063985.txt", n, " ", a+=n - eulerphi(n)) ) } \\ Harry J. Smith, Sep 04 2009
    
  • Python
    from sympy.ntheory import totient
    def a(n): return sum(x - totient(x) for x in range(1,n + 1))
    [a(n) for n in range(1, 51)] # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A063985(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(k1*(k1+1)-2*A063985(k1)-1)
            j, k1 = j2, n//j2
        return (2*n+c-j)//2 # Chai Wah Wu, Mar 24 2021
    

Formula

a(n) = Sum_{x=1..n} (x - phi(x)) = Sum(x) - Sum(phi(x)) = A000217(n) - A002088(n), phi(n) = A000010(n), cototient(n) = A051953(n).
a(n) = n^2 - A091369(n). - Enrique Pérez Herrero, Feb 25 2012
G.f.: x/(1 - x)^3 - (1/(1 - x))*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 18 2017
a(n) = (1/2 - 3/Pi^2)*n^2 + O(n*log(n)). - Amiram Eldar, Jul 26 2022

Extensions

Corrected by Robert G. Wilson v, Dec 13 2006

A015613 a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 11, 14, 19, 22, 31, 34, 45, 50, 57, 64, 79, 84, 101, 108, 119, 128, 149, 156, 175, 186, 203, 214, 241, 248, 277, 292, 311, 326, 349, 360, 395, 412, 435, 450, 489, 500, 541, 560, 583, 604, 649, 664, 705, 724, 755, 778, 829, 846, 885, 908, 943
Offset: 1

Views

Author

Joseph L. Pe, Oct 24 2002

Keywords

Comments

a(n) is half the number of fractions reduced to lowest terms with numerator and denominator in {2, 3, ..., n}. a(5) = 5 = (1/2) * |{2/3, 2/5, 3/2, 3/4, 3/5, 4/3, 4/5, 5/2, 5/3, 5/4}|. - Stefano Spezia, Aug 11 2019

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
           numtheory[phi](n)-1+a(n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 11 2019
  • Mathematica
    f[n_] := Module[{s, i}, s = 0; For[i = 1, i < n, i++, If[Mod[n, i] != 0, s = s + EulerPhi[i]]]; s]; Table[f[i], {i, 1, 100}]
    Table[Sum[EulerPhi[i](Ceiling[n/i]-Floor[n/i]),{i,n}],{n,60}] (* Harvey P. Dale, Feb 06 2025 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015613(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*(A015613(k1)+k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-3)-c+j)//2 # Chai Wah Wu, Mar 25 2021

Formula

a(n) = sum of phi(e) where e ranges over all nondivisors of n that are between 1 and n. - Joseph L. Pe, Oct 24 2002
a(n) = A002088(n) - n.
a(n) = A091369(n) - A000217(n). - Alois P. Heinz, Aug 11 2019

Extensions

Edited by Vladeta Jovovic, Mar 23 2003
Showing 1-2 of 2 results.