A007821 Primes p such that pi(p) is not prime.
2, 7, 13, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 79, 89, 97, 101, 103, 107, 113, 131, 137, 139, 149, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 313, 317, 337, 347, 349, 359, 373
Offset: 1
Keywords
References
- C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..1000
- Lubomir Alexandrov, On the nonasymptotic prime number distribution, arXiv:math/9811096 [math.NT], 1998.
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
Crossrefs
Programs
-
Haskell
a007821 = a000040 . a018252 a007821_list = map a000040 a018252_list -- Reinhard Zumkeller, Jan 12 2013
-
Maple
A007821 := proc(n) ithprime(A018252(n)) ; end proc: # R. J. Mathar, Jul 07 2012
-
Mathematica
Prime[ Select[ Range[75], !PrimeQ[ # ] &]] (* Robert G. Wilson v, Mar 15 2004 *) With[{nn=100},Pick[Prime[Range[nn]],Table[If[PrimeQ[n],0,1],{n,nn}],1]] (* Harvey P. Dale, Aug 14 2020 *)
-
PARI
forprime(p=2, 1e3, if(!isprime(primepi(p)), print1(p, ", "))) \\ Felix Fröhlich, Aug 16 2014
-
Python
from sympy import primepi def A007821(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-(p:=primepi(x))+primepi(p) return bisection(f,n,n) # Chai Wah Wu, Oct 19 2024
Formula
A175247 U { a(n); n > 1 } = A000040. { a(n) } = { 2 } U { primes (A000040) with composite index (A002808) }. - Jaroslav Krizek, Mar 13 2010
G.f. over nonprime powers: Sum_{k >= 1} prime(k)*x^k-prime(prime(k))*x^prime(k). - Benedict W. J. Irwin, Jun 11 2016
Extensions
Edited by M. F. Hasler, Jul 31 2015
Comments