A093446
Largest member of the n-th row of the triangular triangle (A093445).
Original entry on oeis.org
1, 3, 9, 18, 33, 54, 82, 120, 165, 225, 294, 378, 476, 588, 720, 865, 1035, 1221, 1430, 1662, 1914, 2197, 2499, 2835, 3195, 3585, 4008, 4456, 4947, 5463, 6021, 6612, 7239, 7910, 8610, 9366, 10153, 10989, 11868, 12788, 13764, 14775, 15850, 16965, 18135
Offset: 1
The row for n = 4 is (1+2+3+4), (5+6+7), (8+9), 10 => 10 18 17 10. The largest member is 18 hence a(4) = 18.
-
a093446 = maximum . a093445_row -- Reinhard Zumkeller, Oct 03 2012
-
T[n_] := n(n + 1)/2; TT[n_, k_] := T[k*n - T[k - 1]] - T[(k - 1)*n - T[k - 2]]; Max[ # ] & /@ Table[ TT[n, k], {n, 45}, {k, n}]
A005920
Tricapped prism numbers.
Original entry on oeis.org
1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a005920 n = (n * (n * (3 * n + 7) + 6) + 2) `div` 2
-- Reinhard Zumkeller, Oct 03 2012
-
[(3*n^3+7*n^2+6*n+2)/2 : n in [0..50]]; // Wesley Ivan Hurt, May 05 2021
-
a:=n->(3*n^3+7*n^2+6*n+2)/2: seq(a(n),n=0..60);
A005920:=(1+5*z+3*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
CoefficientList[ Series[(1+5x+3x^2)/(1-x)^4, {x, 0, 39}], x] (* Jean-François Alcover, Dec 02 2011, after Simon Plouffe *)
LinearRecurrence[{4,-6,4,-1},{1,9,33,82},40] (* Harvey P. Dale, Sep 25 2012 *)
-
a(n)=n*(3*n^2+7*n+6)/2+1 \\ Charles R Greathouse IV, Oct 07 2015
A177708
Pentagonal triangle.
Original entry on oeis.org
1, 6, 12, 18, 57, 51, 40, 156, 209, 145, 75, 330, 531, 534, 330, 126, 600, 1074, 1278, 1122, 651, 196, 987, 1895, 2488, 2559, 2081, 1162, 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926, 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015
Offset: 1
The row for n = 4 is (1+5+12+22), (35+51+70), (92+117), 145 => 40, 156, 209, 145.
1;
6, 12;
18, 57, 51;
40, 156, 209, 145;
75, 330, 531, 534, 330;
126, 600, 1074, 1278, 1122, 651;
196, 987, 1895, 2488, 2559, 2081, 1162;
288, 1512, 3051, 4275, 4824, 4563, 3537, 1926;
405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015;
550, 3060, 6596, 10024, 12570, 13775, 13450, 11631, 8534, 4510;
-
A000326 :=proc(n) n*(3*n-1)/2 ; end proc:
A177708 := proc(n,k) kc := 1 ; nsk := n ; ns := 1 ; while kc < k do ns := ns+nsk ; kc := kc+1 ; nsk := nsk-1 ; end do: add(A000326(i),i=ns..ns+nsk-1) ; end proc: # R. J. Mathar, Dec 14 2010
-
Table[Total/@TakeList[PolygonalNumber[5,Range[60]],Range[n,1,-1]],{n,10}]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 17 2018 *)
A093447
Triangle a(n,k) read by rows n which contain columns k=1,2,..,n, where each entry is the product of numbers (k-1)*n-T(k-2)+1 through k*n-T(k-1).
Original entry on oeis.org
1, 2, 3, 6, 20, 6, 24, 210, 72, 10, 120, 3024, 1320, 182, 15, 720, 55440, 32760, 4896, 380, 21, 5040, 1235520, 1028160, 175560, 13800, 702, 28, 40320, 32432400, 39070080, 7893600, 657720, 32736, 1190, 36, 362880, 980179200, 1744364160
Offset: 1
In factorized notation the triangle starts
1;
1*2, 3;
1*2*3, 4*5, 6;
1*2*3*4, 5*6*7, 8*9, 10;
1*2*3*4*5, 6*7*8*9, 10*11*12, 13*14, 15;
which gives
1;
2, 3;
6, 20, 6;
24, 210, 72, 10;
120, 3024, 1320, 182, 15;
720,55440,32760, 4896, 380, 21;
Original entry on oeis.org
1, 5, 32, 316, 4661, 94217, 2458810, 80128082, 3193424921, 153067911301, 8685693546692, 574691476630760, 43735137898763917, 3784250198022172001, 368841694500041857646, 40194470526005627873182
Offset: 1
The row for n = 4 is
(1*2*3*4), (5*6*7), (8*9), 10 or
24 210 72 10.
hence a(4) = 24 +210 +72 +10 = 316.
Showing 1-5 of 5 results.
Comments