cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093446 Largest member of the n-th row of the triangular triangle (A093445).

Original entry on oeis.org

1, 3, 9, 18, 33, 54, 82, 120, 165, 225, 294, 378, 476, 588, 720, 865, 1035, 1221, 1430, 1662, 1914, 2197, 2499, 2835, 3195, 3585, 4008, 4456, 4947, 5463, 6021, 6612, 7239, 7910, 8610, 9366, 10153, 10989, 11868, 12788, 13764, 14775, 15850, 16965, 18135
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2004

Keywords

Comments

The largest terms is near the middle term at about 42.265%. Lim a(n) -> 0.19245*n^3

Examples

			The row for n = 4 is (1+2+3+4), (5+6+7), (8+9), 10 => 10 18 17 10. The largest member is 18 hence a(4) = 18.
		

Crossrefs

Programs

  • Haskell
    a093446 = maximum . a093445_row  -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    T[n_] := n(n + 1)/2; TT[n_, k_] := T[k*n - T[k - 1]] - T[(k - 1)*n - T[k - 2]]; Max[ # ] & /@ Table[ TT[n, k], {n, 45}, {k, n}]

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 24 2004

A005920 Tricapped prism numbers.

Original entry on oeis.org

1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
Offset: 0

Views

Author

Keywords

Comments

a(n) = (n+1)*A000326(n+1) - Sum_{i=0...n} A001477(i) = (n+1)*((n+1)*(3*n+2)/2) - A000217(n) = (n+1)*(3*n^2+4n+2)/2. - Bruno Berselli, Apr 25 2010
Also central terms of triangle A093445: a(n) = A093445(2*n+1,n+1). - Reinhard Zumkeller, Oct 03 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005945, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. - Bruno Berselli, Apr 25 2010

Programs

Formula

a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022

Extensions

More terms from Emeric Deutsch, May 09 2004

A177708 Pentagonal triangle.

Original entry on oeis.org

1, 6, 12, 18, 57, 51, 40, 156, 209, 145, 75, 330, 531, 534, 330, 126, 600, 1074, 1278, 1122, 651, 196, 987, 1895, 2488, 2559, 2081, 1162, 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926, 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015
Offset: 1

Views

Author

Jonathan Vos Post, Dec 11 2010

Keywords

Comments

This is to A093445 as pentagonal numbers A000326 are to triangular numbers A000217. The n-th row of the triangular table begins by considering A000217(n) pentagonal numbers (starting with 1) in order. Now segregate them into n chunks beginning with n members in the first chunk, n-1 members in the second chunk, and so forth. Now sum each chunk. Thus the first term is the sum of first n numbers = n*(3n-1)/2, the second term is the sum of the next n-1 terms (from n+1 to 2n-1), the third term is the sum of the next n-2 terms (2n to 3n-3)... This triangle can be called the pentagonal triangle. The sequence contains the triangle by rows. The first column is A002411 (Pentagonal pyramidal numbers: n^2*(n+1)/2).

Examples

			The row for n = 4 is (1+5+12+22), (35+51+70), (92+117), 145 => 40, 156, 209, 145.
    1;
    6,   12;
   18,   57,   51;
   40,  156,  209,   145;
   75,  330,  531,   534,   330;
  126,  600, 1074,  1278,  1122,   651;
  196,  987, 1895,  2488,  2559,  2081,  1162;
  288, 1512, 3051,  4275,  4824,  4563,  3537,  1926;
  405, 2196, 4599,  6750,  8100,  8370,  7506,  5634, 3015;
  550, 3060, 6596, 10024, 12570, 13775, 13450, 11631, 8534, 4510;
		

Crossrefs

Cf. A000217, A000326, A002411, A093445, A236770 (right border).

Programs

  • Maple
    A000326 :=proc(n) n*(3*n-1)/2 ; end proc:
    A177708 := proc(n,k) kc := 1 ; nsk := n ; ns := 1 ; while kc < k do ns := ns+nsk ; kc := kc+1 ; nsk := nsk-1 ; end do: add(A000326(i),i=ns..ns+nsk-1) ; end proc: # R. J. Mathar, Dec 14 2010
  • Mathematica
    Table[Total/@TakeList[PolygonalNumber[5,Range[60]],Range[n,1,-1]],{n,10}]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 17 2018 *)

Formula

T(n,1) = A002411(n).
T(n,2) = n*(n-1)*(7*n-2)/2.
T(n,3) = (n-2)*(19*n^2-26*n+9)/2 = Sum_{i=2n..3(n-1)} A000326(i).

A093447 Triangle a(n,k) read by rows n which contain columns k=1,2,..,n, where each entry is the product of numbers (k-1)*n-T(k-2)+1 through k*n-T(k-1).

Original entry on oeis.org

1, 2, 3, 6, 20, 6, 24, 210, 72, 10, 120, 3024, 1320, 182, 15, 720, 55440, 32760, 4896, 380, 21, 5040, 1235520, 1028160, 175560, 13800, 702, 28, 40320, 32432400, 39070080, 7893600, 657720, 32736, 1190, 36, 362880, 980179200, 1744364160
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2004

Keywords

Comments

This is built by starting from the sequence 1,2,....,T(n) in row n, where T(n) is the triangular number A000217(n) and packaging its first n, the next n-1, the next n-2,... up to the last number in groups and writing down the product of each group in one cell of the triangle. The first column is A000142. The second column is essentially A006963. The 3rd column is essentially A001763. The diagonal is A000217. - R. J. Mathar, Jul 26 2007

Examples

			In factorized notation the triangle starts
1;
1*2, 3;
1*2*3, 4*5, 6;
1*2*3*4, 5*6*7, 8*9, 10;
1*2*3*4*5, 6*7*8*9, 10*11*12, 13*14, 15;
which gives
1;
2, 3;
6, 20, 6;
24, 210, 72, 10;
120, 3024, 1320, 182, 15;
720,55440,32760, 4896, 380, 21;
		

Crossrefs

Programs

  • Maple
    A000217 := proc(n) n*(n+1)/2 ; end: A093447 := proc(n,k) factorial(k*n-A000217(k-1))/factorial((k-1)*n-A000217(k-2)) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d, ",A093447(n,k)) ; od ; od: # R. J. Mathar, Jul 26 2007

Formula

a(n,k)= [k*n-T(k-1)]!/[(k-1)*n-T(k-2)]! where T(n)=A000217(n). - R. J. Mathar, Jul 26 2007

Extensions

More terms from R. J. Mathar, Jul 26 2007

A093448 Rows sums of the triangle A093447.

Original entry on oeis.org

1, 5, 32, 316, 4661, 94217, 2458810, 80128082, 3193424921, 153067911301, 8685693546692, 574691476630760, 43735137898763917, 3784250198022172001, 368841694500041857646, 40194470526005627873182
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2004

Keywords

Examples

			The row for n = 4 is
(1*2*3*4), (5*6*7), (8*9), 10 or
24 210 72 10.
hence a(4) = 24 +210 +72 +10 = 316.
		

Crossrefs

Programs

Extensions

More terms from R. J. Mathar, Jul 27 2007
Showing 1-5 of 5 results.